
MPItrampoline:
Choose your MPI implementation

at run time
Erik Schnetter, Perimeter Institute

EasyBuild tech talks V
2021-12-20



Please interrupt me for questions at any time



Part 1: Why MPItrampoline?



What is MPI (“Message Passing Interface”)?

• MPI is a source-level standard for distributed computing
• Basically send/receive messages
• mpi-forum.org

• Many implementations:
• MPICH (open source)
• OpenMPI (open source)

• Cray MPI
• IBM Spectrum MPI
• Intel MPI
• Microsoft MPI
• …



Using MPI

• Run many copies of a program on different nodes
• Send/receive messages
• Collective operations: barrier, broadcast, reduce, …
• Read/write from/to memory of another process
• Parallel I/O

• CSP, “Communicating Sequential Processes”
• Very 1990s, somewhat object-oriented programming model, with global state

• Portable and ubiquitous in HPC (High-Performance Computing)



High-Performance Computing

• Performance has two sides:
• Bandwidth (bytes per second)
• Latency (minimum wait time)

• Bandwidth scales easily (cloud computing). Latency doesn’t.

• 10 Gbit Ethernet (TCP): 10…100 μs
• InfiniBand: 1…10 μs

• MPI libraries offers efficient access to efficient network interfaces



How to install software

• Unix philosophy (outdated): build from source
• Slow, fragile, requires substantial expertise, basically not reproducible

• Real world: download binaries
• Red Hat, Ubuntu, Nix, Anaconda (Python), Yggdrasil (Julia)
• Docker images

• VM (Virtual Machine) images
• disk images

• What about MPI?



Everything Unravels 

• MPI standard is a source-level standard
• MPI libraries cannot be installed as binaries
• MPI libraries access system hardware; need to be linked against system-

specific libraries, configured for particular hardware (like a device driver)

•⟶ All software that uses MPI must be installed from source 
everywhere
•⟶ Decades of package management advances down the drain
•⟶ EasyBuild, Spack cannot offer binaries on HPC systems
•⟶ HPC suffers from very high incidental complexity



MPI ABI

• MPI ABI: Make different MPI implementations binary compatible

• Approach:
• The system-specific parts of MPI are installed by an administrator, similar to a 

device driver
• The application links to a generic MPI interface
• They interact via a well-defined ABI (Application Binary Interface)

• Works for libc and OS kernel, for CUDA and CUDA driver, etc.



MPItrampoline

actual
MPI

library
MPI 

wrapper
MPI 

trampoline
Application

links againstlinks against loads at run time

Looks like a real MPI 
library, but doesn’t 

do any work

Provides compatibility 
layer around real MPI 

library

using MPI ABI

system provided
user provided

(can be installed as binary)



WI4MPI (Wrapper 
Interface For MPI)

https://github.com/cea-hpc/wi4mpi



Using MPItrampoline

• Build application against MPItrampline as MPI library
• Can be shipped as binary

• On target system, build MPIwrapper for every MPI library there
• Ideally done by system administrator or experienced user

• At run time, set environment variable MPITRAMPOLINE_LIB to point 
to desired MPIwrapper

• Ready for production use, but no big user yet (“beta”)
• Currently integrating MPItrampoline with Julia MPI bindings
• See github.com/eschnett/MPItrampoline



Julia MPI bindings

• Julia is a modern programming language, well suited for numerical 
applications
• Julia’s package manager (Yggdrasil) ships binaries for external 

dependencies (FFTW, HDF5, PETSc)
• Important: all code (both Julia code and all external dependencies) 

needs to use the same MPI implementation
• Usually, caller passes MPI handles to libraries

• Goal: Use MPItrampoline
• and a fallback MPICH for non-HPC systems



Part 2: Under the Hood



MPI ABI

• The MPI standard defines:
• Compile-time constants

• #define MPI_MAX_ERROR_STRING 1024
• Types

• typedef uintptr_t MPI_Comm;
• Load-time constants

• MPI_Comm MPI_COMM_WORLD;
• Functions

• int MPI_Comm_size(MPI_Comm comm, 
int *size);

• Callbacks
• void (*)(void *invec, void *inoutvec, int 

*len, MPI_Datatype *datatype);

• MPItrampoline queries MPIwrapper
about values of constants and 
pointers to functions
• MPIwrapper translates MPI ABI to 

actual MPI library

MPItrampoline

actual
MPI

library
MPI 

wrapper
MPI 

trampoline
Application

links againstlinks against loads at run time

Looks like a real MPI 
library, but doesn’t 

do any work

Provides compatibility 
layer around real MPI 

library

using MPI ABI

system provided
user provided

(can be installed as binary)



Startup

• At run time, when MPItrampoline
is loaded, it needs to decide which
MPIwrapper to load

• Environment variable MPITRAMPOLINE_LIB
• Can set a global variable
• Can hard-code a default value at build time
• Otherwise, cannot call MPI functions

MPItrampoline

actual
MPI

library
MPI 

wrapper
MPI 

trampoline
Application

links againstlinks against loads at run time

Looks like a real MPI 
library, but doesn’t 

do any work

Provides compatibility 
layer around real MPI 

library

using MPI ABI

system provided
user provided

(can be installed as binary)



Shared Libraries
and Plugins
• There are two functions MPI_Init:

• In MPItrampoline
• In the actual MPI library

• They are incompatible!

• Linker namespaces to the rescue (dlmopen)
• Except they don’t work in practice (on HPC systems)
• And they aren’t available on macOS, BSD

• Symbol Interposition
• RTLD_DEEPBIND (Linux, (BSD?))
• Two-level namespaces (macOS)

MPItrampoline

actual
MPI

library
MPI 

wrapper
MPI 

trampoline
Application

links againstlinks against loads at run time

Looks like a real MPI 
library, but doesn’t 

do any work

Provides compatibility 
layer around real MPI 

library

using MPI ABI

system provided
user provided

(can be installed as binary)

MPI_InitMPI_Init



Efficiency

• MPItrampoline’s interface layer is very efficient:
• MPI handles have 64 bits, might require conversion from/to 32 bits
• Arrays of MPI handles might require copying (but no allocations)
• MPI status has 3 extra fields (could be optimized)
• Callback functions need to be wrapped

• MPI constants have the same values
• MPI functions are called via function pointers
• Nothing expensive happens inside MPItrampoline

• Sorry, no benchmark results yet



Current State

• C and Fortran 77 bindings complete, except for some callbacks
• ADIOS2, AMReX, Boost(*), FFTW, HDF5, PETSc, and many others build
• OpenMPI test suite passes (*)
• I am using it in production for the Einstein Toolkit einsteintoolkit.org, 

via Spack
• Working on using it for Julia’s external packages (with MPICH fallback)

• Let’s drag HPC package management kicking and screaming into the 
Century of the Fruitbat



Perimeter Institute
for Theoretical Physics
Waterloo, Ontario, Canada


