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Please interrupt me for questions at any time



Part 1: Why MPItrampoline?



What is MPI (“Message Passing Interface”)?

• MPI is a source-level standard for distributed computing
• Basically send/receive messages
• mpi-forum.org

• Many implementations:
• MPICH (open source)
• OpenMPI (open source)

• Cray MPI
• IBM Spectrum MPI
• Intel MPI
• Microsoft MPI
• …



Using MPI

• Run many copies of a program on different nodes
• Send/receive messages
• Collective operations: barrier, broadcast, reduce, …
• Read/write from/to memory of another process
• Parallel I/O

• CSP, “Communicating Sequential Processes”
• Very 1990s, somewhat object-oriented programming model, with global state

• Portable and ubiquitous in HPC (High-Performance Computing)



High-Performance Computing

• Performance has two sides:
• Bandwidth (bytes per second)
• Latency (minimum wait time)

• Bandwidth scales easily (cloud computing). Latency doesn’t.

• 10 Gbit Ethernet (TCP): 10…100 μs
• InfiniBand: 1…10 μs

• MPI libraries offers efficient access to efficient network interfaces



How to install software

• Unix philosophy (outdated): build from source
• Slow, fragile, requires substantial expertise, basically not reproducible

• Real world: download binaries
• Red Hat, Ubuntu, Nix, Anaconda (Python), Yggdrasil (Julia)
• Docker images

• VM (Virtual Machine) images
• disk images

• What about MPI?



Everything Unravels 

• MPI standard is a source-level standard
• MPI libraries cannot be installed as binaries
• MPI libraries access system hardware; need to be linked against system-

specific libraries, configured for particular hardware (like a device driver)

•⟶ All software that uses MPI must be installed from source 
everywhere
•⟶ Decades of package management advances down the drain
•⟶ EasyBuild, Spack cannot offer binaries on HPC systems
•⟶ HPC suffers from very high incidental complexity



MPI ABI

• MPI ABI: Make different MPI implementations binary compatible

• Approach:
• The system-specific parts of MPI are installed by an administrator, similar to a 

device driver
• The application links to a generic MPI interface
• They interact via a well-defined ABI (Application Binary Interface)

• Works for libc and OS kernel, for CUDA and CUDA driver, etc.
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WI4MPI (Wrapper 
Interface For MPI)

https://github.com/cea-hpc/wi4mpi



Using MPItrampoline

• Build application against MPItrampline as MPI library
• Can be shipped as binary

• On target system, build MPIwrapper for every MPI library there
• Ideally done by system administrator or experienced user

• At run time, set environment variable MPITRAMPOLINE_LIB to point 
to desired MPIwrapper

• Ready for production use, but no big user yet (“beta”)
• Currently integrating MPItrampoline with Julia MPI bindings
• See github.com/eschnett/MPItrampoline



Julia MPI bindings

• Julia is a modern programming language, well suited for numerical 
applications
• Julia’s package manager (Yggdrasil) ships binaries for external 

dependencies (FFTW, HDF5, PETSc)
• Important: all code (both Julia code and all external dependencies) 

needs to use the same MPI implementation
• Usually, caller passes MPI handles to libraries

• Goal: Use MPItrampoline
• and a fallback MPICH for non-HPC systems



Part 2: Under the Hood



MPI ABI

• The MPI standard defines:
• Compile-time constants

• #define MPI_MAX_ERROR_STRING 1024
• Types

• typedef uintptr_t MPI_Comm;
• Load-time constants

• MPI_Comm MPI_COMM_WORLD;
• Functions

• int MPI_Comm_size(MPI_Comm comm, 
int *size);

• Callbacks
• void (*)(void *invec, void *inoutvec, int 

*len, MPI_Datatype *datatype);

• MPItrampoline queries MPIwrapper
about values of constants and 
pointers to functions
• MPIwrapper translates MPI ABI to 

actual MPI library
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Startup

• At run time, when MPItrampoline
is loaded, it needs to decide which
MPIwrapper to load

• Environment variable MPITRAMPOLINE_LIB
• Can set a global variable
• Can hard-code a default value at build time
• Otherwise, cannot call MPI functions
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Shared Libraries
and Plugins
• There are two functions MPI_Init:

• In MPItrampoline
• In the actual MPI library

• They are incompatible!

• Linker namespaces to the rescue (dlmopen)
• Except they don’t work in practice (on HPC systems)
• And they aren’t available on macOS, BSD

• Symbol Interposition
• RTLD_DEEPBIND (Linux, (BSD?))
• Two-level namespaces (macOS)
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Efficiency

• MPItrampoline’s interface layer is very efficient:
• MPI handles have 64 bits, might require conversion from/to 32 bits
• Arrays of MPI handles might require copying (but no allocations)
• MPI status has 3 extra fields (could be optimized)
• Callback functions need to be wrapped

• MPI constants have the same values
• MPI functions are called via function pointers
• Nothing expensive happens inside MPItrampoline

• Sorry, no benchmark results yet



Current State

• C and Fortran 77 bindings complete, except for some callbacks
• ADIOS2, AMReX, Boost(*), FFTW, HDF5, PETSc, and many others build
• OpenMPI test suite passes (*)
• I am using it in production for the Einstein Toolkit einsteintoolkit.org, 

via Spack
• Working on using it for Julia’s external packages (with MPICH fallback)

• Let’s drag HPC package management kicking and screaming into the 
Century of the Fruitbat
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