
EasyBuild @ CSCS

2nd EasyBuild User Meeting

February 8th – 10th 2017, Juelich (Germany)

Luca Marsella and Guilherme Peretti-Pezzi - Scientific Computing Support (CSCS)

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

EasyBuild @ CSCS 2

Outline

Why using EasyBuild?

EasyBuild @ CSCS 3

 Lack of standard way to describe build recipes

 Shell scripts, readme files, web/wiki pages, invisible docs

 Software available is very heterogeneous across systems

 Moving users to a different machine requires a lot of work

 Systems upgrades are a huge overhead

 Lots of manual work to re-deploy existing software

 Little collaboration with other sites doing the very same thing

 Advantage to build a network to build HPC scientific applications

EasyBuild advantages

 open source python framework to build scientific software

 maintenance of multiple software deployments easy

 downloads, compiles and installs software packages

 resolving dependencies and creating modulefiles too

 adopted by many HPC centres, on Cray systems as well

EasyBuild @ CSCS 4

Local builds by users with EasyBuild

 $ module load daint-gpu EasyBuild-custom

 $HOME/easybuild/<system-name>/<architecture>

where <architecture> is either <haswell> or <broadwell>

 $ export EASYBUILD_PREFIX=/preferred/installation/folder

 $ export EB_CUSTOM_REPOSITORY=/cscs/repository/folder

 $ git clone https://github.com/eth-cscs/production.git

 $ module use $EASYBUILD_PREFIX/modules/all

$ module load <modulename>/version

 $HOME folder is by default not readable by other users:

make builds available to each group with read-only access

 http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html

EasyBuild @ CSCS 5

https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html

EasyBuild mailing list contributors

EasyBuild @ CSCS 6

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 7

Outline

Software stack on a Cray XC

For example PE 2016.11 [1]

 Cray Compiling Environment - CCE 8.5.5

 Cray Message Passing Toolkit - MPT 7.5.0

 Perftools 6.4.3

 Cray Scientific and Math Libraries - CSML

 LibSci 16.11.1

 LibSci_ACC 16.11.1

 PETSc 3.7.2.1

 Trilinos 12.6.3.3

 TPSL 16.07.1

 FFTW 3.3.4.10

 [1] http://docs.cray.com/books/S-9408-1611/

EasyBuild @ CSCS 8

CrayGNU-2016.11.eb

PrgEnv-gnu

• gcc/5.3.0

• cray-mpich/7.5.0

• cray-libsci/16.11.1

(BLAS, LAPACK,

ScaLAPACK, BLACS)

foss-2016.04.eb

• GCC/5.3.0

 (binutils/2.26)

• OpenMPI/1.10.2

• OpenBLAS/0.2.18

• ScaLAPACK/2.0.2

(LAPACK-3.6.0)

• FFTW/3.3.4

http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb

EasyBuild Enhancements for Cray Systems

1. Support for external module files

2. Definition of Cray-specific toolchains

3. Custom easyblock for Cray toolchains

 Various smaller enhancements specific to the Cray

environment

 Thanks to Peter Forai & Kenneth Hoste

EasyBuild @ CSCS 9

1. Support for external module files

EasyBuild relies on the (environment) modules in a
fundamental way as they contain information about the
installed software they correspond to.

 EasyBuild can now leverage modules that were not
generated by EasyBuild for example as part of the Cray PE.

 this includes support that was added to supply metadata for
external modules, so that EasyBuild can be made aware of

 the software name(s), version(s) and installation prefix

 since EasyBuild version 2.7.0, a file containing metadata for
selected modules provided by the Cray PE is included as
part of EasyBuild.

EasyBuild @ CSCS 10

https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg
https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg

2. Custom easyblock for Cray toolchains

 This easyblock defines the version pinned components

that make up the toolchain

 Easyblock implements logic to render the module files for

the EasyBuild Cray toolchains

 ensures that switching toolchain components works

 avoids the need to run module purge

 New toolchain version combinations can then be placed in

easyconfig file to ease creation of new toolchains.

EasyBuild @ CSCS 11

3. Definition of Cray-specific Toolchains

Cray-specific toolchains have been implemented for each PrgEnv module:

 CrayCCE for PrgEnv-cray

 CrayGNU for PrgEnv-gnu

 CrayIntel for PrgEnv-intel

 CrayPGI for PrgEnv-pgi

 Compiler component of the toolchains EasyBuild leverages the compiler

wrappers provided by the Cray PE and EasyBuild exposes

 $CC, $CXX, $CFLAGS, $CXXFLAGS, $F77

EasyBuild @ CSCS 12

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 13

Outline

Overview of CSCS HPC systems

EasyBuild @ CSCS 14

System Scope Accelerators / node Type

Piz Daint User Lab 1 GPU Cray XC50

Monch PASC projects 0 NEC Intel IvyBridge

Escha Meteo Swiss 16 GPU Cray CS-Storm

Kesch Meteo Swiss 16 GPU Cray CS-Storm

Leone Large Memory 1 GPU HP DL 360 Gen 9

Piz Kesch & Escha use case

(MeteoSwiss / Cray CS-Storm)

EasyBuild @ CSCS 15

Cray CS-Storm: 12 nodes

• 2 x Intel Haswell E5-2690v3 2.6 GHz 12-core

CPUs per node

• total of 24 E5-2690v3 processors

• 256 GB 2133 MHz DDR4 memory per node

• total of 3 TB

• 8 NVIDIA® Tesla® K80 GPU devices per node

• total of 192 GPUs

“Kesch” and “Es-cha” consist of identical systems

(production and failover), each comprising:

MeteoSwiss, the Swiss national weather forecasting

service, hosts their dedicated production systems at

Cray CS-Storm at CSCS, Lugano.

Piz Kesch & Escha use case

(MeteoSwiss / Cray CS-Storm)

 Cray PE is partially supported on the CS-Storm series:

 PrgEnv-cray is available but not GNU or Intel

 System provided GCC-based compiler stack was unable to assemble

optimized (AVX2) instructions for system's Intel Haswell processor.

 GNU binutils was too old

 While waiting for a definitive fix from Cray…

 The whole software stack required by MeteoSwiss was deployed using

EasyBuild

 Using a standard open source toolchain (gmvolf)

 EasyBuild software stack now in production since September/2015

EasyBuild @ CSCS 16

Piz Daint

Model Cray XC50/XC40

XC50 Compute

Nodes

Intel® Xeon® E5-2690 v3 (Haswell) @ 2.60GHz (12 cores,

64GB RAM) and

NVIDIA® Tesla® P100 16GB

XC40 Compute

Nodes

Intel® Xeon® E5-2695 v4 (Broadwell) @ 2.10GHz (18 cores,

64/128 GB RAM)

Login Nodes Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256

GB RAM)

Interconnect

Configuration

Aries routing and communications ASIC, and Dragonfly

network topology

Scratch capacity 6.2 PB (Luster / Sonexion 3000)

EasyBuild @ CSCS 17

Piz Daint

EasyBuild @ CSCS 18

 #8 Top 500

 #1 in Europe

 9779.0 PFLOPS

 #2 Green 500

 7453.5 MFLOPS/W

Available software on Cray using EasyBuild

 Stock EasyBuild repository

 Python, including

 accelerated numpy + scipy,
h5py, …

 WRF
 CP2K[*]
 GROMACS[*]
 Boost
 GSL

EasyBuild @ CSCS 19

 CSCS Production Github
repository
 Amber[*]
 CDO
 CPMD
 LAMMPS[*]
 NCL
 NCO
 ParaView[*]
 Octave
 QuantumESPRESSO[*]
 R
 Scalasca
 ScoreP
 TensorFlow[*]
 VASP[*]
 Visit
 VMD[*]
 VTK[*]

[*] = GPU-enabled recipe available

https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production

EasyBuild @ CSCS 20

Apps and Users using xalt statistics

Github, EasyBuild & Continuous Integration

 Github repository hosting all recipes in production on Piz Daint

 https://github.com/eth-cscs/production
 Recipes go through a reviewing process (standard PR procedure)

 Automatic checking of build recipes on Piz Daint (by Jenkins)

 GitHub Pull Request Builder Plugin for Jenkins

 https://github.com/janinko/ghprb

 Less error-prone & improved reproducibility

 Robot ensures that recipes work without any extra tweaking

 Such as exports and custom .bashrc files

 Autonomous deployment of software/modules on production
(Jenkins)

 List of easyconfig files is automatically deployed by Jenkins
 For example, list of GPU-enabled software stack for the P100 partition

 https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

EasyBuild @ CSCS 21

https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

Final comments: EasyBuild & Cray

 Proprietary and FOSS can co-exist

 Best of two worlds

 Integrates new applications with optimized proprietary stack

 Support is assured by Cray and also by the enthusiasts of the EB

community

 Minimizes risks of vendor lock-in

 EasyBuild provides alternatives in case of issues with software

provided by Cray

EasyBuild @ CSCS 22

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 23

Outline

Jenkins

 Jenkins is used at CSCS for continuous integration/validation

 Advantages:

 Several plugins are available

 easily configured to run tasks by ssh anywhere

 logs for all of your executions

 info on past jobs and logs always accessible through the web interface

 Usage examples:

 Development/Integration:

 Checkout svn/git repositories to automatically build on different platforms

 Validation

 Periodically run unit tests

 Monitoring

 Periodically run sanity and performance tests (*regression*)

 Run your favorite script or app

 example at CSCS: driving the acceptance tests of new HPC systems

EasyBuild @ CSCS 24

Monitoring the Lustre scratch performance

with a cray-netcdf-hdf5parallel write test

EasyBuild @ CSCS 25

Building the EasyBuild software stack on

Escha and Kesch (Meteo Swiss system)

EasyBuild @ CSCS 26

Jenkins with EasyBuild: workflow for recipes

 Testing new easyconfig files on systems with EasyBuild

 Workflow setup

1. Create a folder accessible by jenscscs to store the .eb files

 /path/to/eb-files/

2. Create a jenkins project adding the target test system

 CrayGNU = daint

 foss/2015b = monch

3. Add custom commands to the “Execute shell”

 module load EasyBuild-custom

 find /path/to/eb-files/ -name '*CrayGNU-5.2.40*.eb' -exec eb {} "-r -f" \;

 Usage

1. Copy .eb files to /path/to/eb-files/

2. Go to Jenkins and click on “Build now”

EasyBuild @ CSCS 27

Jenkins + Github + EasyBuild Integration:

 Jenkins server setup

 (optional) Setup remote slaves

 By default jenkins will run jobs on the same host as the apache
instance

 If you wish to perform builds on a remote host, you need to add
„slave nodes‟

 Manage Jenkins > Manage nodes > new node

 Install Pull request builder plugin

 Manage Jenkins > Manage Plugins > Available

 Github integration setup

 Create a „jenkins‟ user on github with permissions to write comments on your
project

 (you don‟t want to use your private Github account)

 Jenkins > Manage Jenkins > Githup Pull Request Builder

 Add/test credentials

jenkins + eb + github 28

Jenkins + Github + EasyBuild Integration:

 Jenkins project setup

 Create a new „multi-configuration‟ project

 Section “Source code management”
 Add your github repository to “Repository URL”
 Branch Specifier (blank for 'any‟): ${ghprbActualCommit}

 Section “Build Triggers”
 Enable GH PR builder and set admin lists (github users white list)

 Section “Configuration Matrix”
 Select node(s) under Slaves > Node/label

 Section “Build”
 Add build step > Execute shell
1. Select eb files to build, comparing with master for new/modified .eb

eb_list=$(git diff origin/master..HEAD --name-only --oneline --no-merges --diff-
filter=ACMRTUXB |grep ^easybuild.*\.eb\$ |awk '{print "basename "$0}'|sh)

2. Setup EB and build

for ebfile in $eb_list ;do

 eb $ebfile -r --force

done

jenkins + eb + github 29

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 30

Outline

Conclusion

 Current EB installation is ready for application level

 Validation with

 Python : Piz Daint and Escha/Kesch

 Escha/Kesch: complete software stack built with gmvolf toolchain

 Continuous validation techniques can be easily applied

 Testing builds across all systems with Jenkins

 weekly builds for every machine

 Changes/errors on the PrgEnv can be detected early

 In order to get the most out of EasyBuild

 We need to have consistent PrgEnv across

 OK on Cray systems

 Not currently true on non-Cray

 Achievable with EasyBuild

EasyBuild @ CSCS 31

Work in progress

 Stable Cray support (now completed):

 https://github.com/hpcugent/easybuild-framework/issues/1390

 Rpath support to be tested on Cray systems

 Compatible build description with similar projects (Spack)

 Lower the bar for new users

 For one build users need easyconfig + easyblock + framework

 Extended-dry-run is currently the best approach

EasyBuild @ CSCS 32

https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390

What can be improved?

 Implement new command line options for dependencies:

 --try-dep-version

 Backup of custom easyblocks for reproducibility

 External modules:

 Improve error reporting for missing modules
 Generic/versionless entries on the metadata file

 Add more flexibility to the toolchain definition:

 Integration of EasyBuild with existing compilers

 Command line option to define default module version for builds

EasyBuild @ CSCS 33

Useful links for EasyBuild @ CSCS

 EasyBuild @ CSCS Wiki on GitHub

 https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild

 Easyconfig files repositories

 List of production builds performed by Jenkins

 https://github.com/eth-cscs/production/tree/master/jenkins-builds

 Custom easyconfigs:
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs

 Custom easyblocks:

 https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

EasyBuild @ CSCS 34

https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

Do you want to know more about EasyBuild on Cray?

 Paper on the Cray User Group 2016

 Making Scientific Software Installation Reproducible On Cray
Systems Using EasyBuild

 https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145
.pdf

 EasyBuild website: http://hpcugent.github.io/easybuild

 EasyBuild documentation: http://easybuild.readthedocs.org

 Stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

 EasyBuild mailing list: easybuild@lists.ugent.be -
https://lists.ugent.be/wws/subscribe/easybuild

 Twitter: http://twitter.com/easy_build

 IRC: #easybuild on chat.freenode.net

EasyBuild @ CSCS 35

https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
http://hpcugent.github.io/easybuild
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org/
http://easybuild.readthedocs.org
http://pypi.python.org/pypi/easybuild
http://pypi.python.org/pypi/easybuild
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
http://twitter.com/easy_build
http://twitter.com/easy_build
http://twitter.com/easy_build

Thank you for your kind attention

