
EasyBuild @ CSCS

2nd EasyBuild User Meeting

February 8th – 10th 2017, Juelich (Germany)

Luca Marsella and Guilherme Peretti-Pezzi - Scientific Computing Support (CSCS)

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

EasyBuild @ CSCS 2

Outline

Why using EasyBuild?

EasyBuild @ CSCS 3

 Lack of standard way to describe build recipes

 Shell scripts, readme files, web/wiki pages, invisible docs

 Software available is very heterogeneous across systems

 Moving users to a different machine requires a lot of work

 Systems upgrades are a huge overhead

 Lots of manual work to re-deploy existing software

 Little collaboration with other sites doing the very same thing

 Advantage to build a network to build HPC scientific applications

EasyBuild advantages

 open source python framework to build scientific software

 maintenance of multiple software deployments easy

 downloads, compiles and installs software packages

 resolving dependencies and creating modulefiles too

 adopted by many HPC centres, on Cray systems as well

EasyBuild @ CSCS 4

Local builds by users with EasyBuild

 $ module load daint-gpu EasyBuild-custom

 $HOME/easybuild/<system-name>/<architecture>

where <architecture> is either <haswell> or <broadwell>

 $ export EASYBUILD_PREFIX=/preferred/installation/folder

 $ export EB_CUSTOM_REPOSITORY=/cscs/repository/folder

 $ git clone https://github.com/eth-cscs/production.git

 $ module use $EASYBUILD_PREFIX/modules/all

$ module load <modulename>/version

 $HOME folder is by default not readable by other users:

make builds available to each group with read-only access

 http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html

EasyBuild @ CSCS 5

https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html

EasyBuild mailing list contributors

EasyBuild @ CSCS 6

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 7

Outline

Software stack on a Cray XC

For example PE 2016.11 [1]

 Cray Compiling Environment - CCE 8.5.5

 Cray Message Passing Toolkit - MPT 7.5.0

 Perftools 6.4.3

 Cray Scientific and Math Libraries - CSML

 LibSci 16.11.1

 LibSci_ACC 16.11.1

 PETSc 3.7.2.1

 Trilinos 12.6.3.3

 TPSL 16.07.1

 FFTW 3.3.4.10

 [1] http://docs.cray.com/books/S-9408-1611/

EasyBuild @ CSCS 8

CrayGNU-2016.11.eb

PrgEnv-gnu

• gcc/5.3.0

• cray-mpich/7.5.0

• cray-libsci/16.11.1

(BLAS, LAPACK,

ScaLAPACK, BLACS)

foss-2016.04.eb

• GCC/5.3.0

 (binutils/2.26)

• OpenMPI/1.10.2

• OpenBLAS/0.2.18

• ScaLAPACK/2.0.2

(LAPACK-3.6.0)

• FFTW/3.3.4

http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb

EasyBuild Enhancements for Cray Systems

1. Support for external module files

2. Definition of Cray-specific toolchains

3. Custom easyblock for Cray toolchains

 Various smaller enhancements specific to the Cray

environment

 Thanks to Peter Forai & Kenneth Hoste

EasyBuild @ CSCS 9

1. Support for external module files

EasyBuild relies on the (environment) modules in a
fundamental way as they contain information about the
installed software they correspond to.

 EasyBuild can now leverage modules that were not
generated by EasyBuild for example as part of the Cray PE.

 this includes support that was added to supply metadata for
external modules, so that EasyBuild can be made aware of

 the software name(s), version(s) and installation prefix

 since EasyBuild version 2.7.0, a file containing metadata for
selected modules provided by the Cray PE is included as
part of EasyBuild.

EasyBuild @ CSCS 10

https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg
https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg

2. Custom easyblock for Cray toolchains

 This easyblock defines the version pinned components

that make up the toolchain

 Easyblock implements logic to render the module files for

the EasyBuild Cray toolchains

 ensures that switching toolchain components works

 avoids the need to run module purge

 New toolchain version combinations can then be placed in

easyconfig file to ease creation of new toolchains.

EasyBuild @ CSCS 11

3. Definition of Cray-specific Toolchains

Cray-specific toolchains have been implemented for each PrgEnv module:

 CrayCCE for PrgEnv-cray

 CrayGNU for PrgEnv-gnu

 CrayIntel for PrgEnv-intel

 CrayPGI for PrgEnv-pgi

 Compiler component of the toolchains EasyBuild leverages the compiler

wrappers provided by the Cray PE and EasyBuild exposes

 $CC, $CXX, $CFLAGS, $CXXFLAGS, $F77

EasyBuild @ CSCS 12

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 13

Outline

Overview of CSCS HPC systems

EasyBuild @ CSCS 14

System Scope Accelerators / node Type

Piz Daint User Lab 1 GPU Cray XC50

Monch PASC projects 0 NEC Intel IvyBridge

Escha Meteo Swiss 16 GPU Cray CS-Storm

Kesch Meteo Swiss 16 GPU Cray CS-Storm

Leone Large Memory 1 GPU HP DL 360 Gen 9

Piz Kesch & Escha use case

(MeteoSwiss / Cray CS-Storm)

EasyBuild @ CSCS 15

Cray CS-Storm: 12 nodes

• 2 x Intel Haswell E5-2690v3 2.6 GHz 12-core

CPUs per node

• total of 24 E5-2690v3 processors

• 256 GB 2133 MHz DDR4 memory per node

• total of 3 TB

• 8 NVIDIA® Tesla® K80 GPU devices per node

• total of 192 GPUs

“Kesch” and “Es-cha” consist of identical systems

(production and failover), each comprising:

MeteoSwiss, the Swiss national weather forecasting

service, hosts their dedicated production systems at

Cray CS-Storm at CSCS, Lugano.

Piz Kesch & Escha use case

(MeteoSwiss / Cray CS-Storm)

 Cray PE is partially supported on the CS-Storm series:

 PrgEnv-cray is available but not GNU or Intel

 System provided GCC-based compiler stack was unable to assemble

optimized (AVX2) instructions for system's Intel Haswell processor.

 GNU binutils was too old

 While waiting for a definitive fix from Cray…

 The whole software stack required by MeteoSwiss was deployed using

EasyBuild

 Using a standard open source toolchain (gmvolf)

 EasyBuild software stack now in production since September/2015

EasyBuild @ CSCS 16

Piz Daint

Model Cray XC50/XC40

XC50 Compute

Nodes

Intel® Xeon® E5-2690 v3 (Haswell) @ 2.60GHz (12 cores,

64GB RAM) and

NVIDIA® Tesla® P100 16GB

XC40 Compute

Nodes

Intel® Xeon® E5-2695 v4 (Broadwell) @ 2.10GHz (18 cores,

64/128 GB RAM)

Login Nodes Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256

GB RAM)

Interconnect

Configuration

Aries routing and communications ASIC, and Dragonfly

network topology

Scratch capacity 6.2 PB (Luster / Sonexion 3000)

EasyBuild @ CSCS 17

Piz Daint

EasyBuild @ CSCS 18

 #8 Top 500

 #1 in Europe

 9779.0 PFLOPS

 #2 Green 500

 7453.5 MFLOPS/W

Available software on Cray using EasyBuild

 Stock EasyBuild repository

 Python, including

 accelerated numpy + scipy,
h5py, …

 WRF
 CP2K[*]
 GROMACS[*]
 Boost
 GSL

EasyBuild @ CSCS 19

 CSCS Production Github
repository
 Amber[*]
 CDO
 CPMD
 LAMMPS[*]
 NCL
 NCO
 ParaView[*]
 Octave
 QuantumESPRESSO[*]
 R
 Scalasca
 ScoreP
 TensorFlow[*]
 VASP[*]
 Visit
 VMD[*]
 VTK[*]

[*] = GPU-enabled recipe available

https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production

EasyBuild @ CSCS 20

Apps and Users using xalt statistics

Github, EasyBuild & Continuous Integration

 Github repository hosting all recipes in production on Piz Daint

 https://github.com/eth-cscs/production
 Recipes go through a reviewing process (standard PR procedure)

 Automatic checking of build recipes on Piz Daint (by Jenkins)

 GitHub Pull Request Builder Plugin for Jenkins

 https://github.com/janinko/ghprb

 Less error-prone & improved reproducibility

 Robot ensures that recipes work without any extra tweaking

 Such as exports and custom .bashrc files

 Autonomous deployment of software/modules on production
(Jenkins)

 List of easyconfig files is automatically deployed by Jenkins
 For example, list of GPU-enabled software stack for the P100 partition

 https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

EasyBuild @ CSCS 21

https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

Final comments: EasyBuild & Cray

 Proprietary and FOSS can co-exist

 Best of two worlds

 Integrates new applications with optimized proprietary stack

 Support is assured by Cray and also by the enthusiasts of the EB

community

 Minimizes risks of vendor lock-in

 EasyBuild provides alternatives in case of issues with software

provided by Cray

EasyBuild @ CSCS 22

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 23

Outline

Jenkins

 Jenkins is used at CSCS for continuous integration/validation

 Advantages:

 Several plugins are available

 easily configured to run tasks by ssh anywhere

 logs for all of your executions

 info on past jobs and logs always accessible through the web interface

 Usage examples:

 Development/Integration:

 Checkout svn/git repositories to automatically build on different platforms

 Validation

 Periodically run unit tests

 Monitoring

 Periodically run sanity and performance tests (*regression*)

 Run your favorite script or app

 example at CSCS: driving the acceptance tests of new HPC systems

EasyBuild @ CSCS 24

Monitoring the Lustre scratch performance

with a cray-netcdf-hdf5parallel write test

EasyBuild @ CSCS 25

Building the EasyBuild software stack on

Escha and Kesch (Meteo Swiss system)

EasyBuild @ CSCS 26

Jenkins with EasyBuild: workflow for recipes

 Testing new easyconfig files on systems with EasyBuild

 Workflow setup

1. Create a folder accessible by jenscscs to store the .eb files

 /path/to/eb-files/

2. Create a jenkins project adding the target test system

 CrayGNU = daint

 foss/2015b = monch

3. Add custom commands to the “Execute shell”

 module load EasyBuild-custom

 find /path/to/eb-files/ -name '*CrayGNU-5.2.40*.eb' -exec eb {} "-r -f" \;

 Usage

1. Copy .eb files to /path/to/eb-files/

2. Go to Jenkins and click on “Build now”

EasyBuild @ CSCS 27

Jenkins + Github + EasyBuild Integration:

 Jenkins server setup

 (optional) Setup remote slaves

 By default jenkins will run jobs on the same host as the apache
instance

 If you wish to perform builds on a remote host, you need to add
„slave nodes‟

 Manage Jenkins > Manage nodes > new node

 Install Pull request builder plugin

 Manage Jenkins > Manage Plugins > Available

 Github integration setup

 Create a „jenkins‟ user on github with permissions to write comments on your
project

 (you don‟t want to use your private Github account)

 Jenkins > Manage Jenkins > Githup Pull Request Builder

 Add/test credentials

jenkins + eb + github 28

Jenkins + Github + EasyBuild Integration:

 Jenkins project setup

 Create a new „multi-configuration‟ project

 Section “Source code management”
 Add your github repository to “Repository URL”
 Branch Specifier (blank for 'any‟): ${ghprbActualCommit}

 Section “Build Triggers”
 Enable GH PR builder and set admin lists (github users white list)

 Section “Configuration Matrix”
 Select node(s) under Slaves > Node/label

 Section “Build”
 Add build step > Execute shell
1. Select eb files to build, comparing with master for new/modified .eb

eb_list=$(git diff origin/master..HEAD --name-only --oneline --no-merges --diff-
filter=ACMRTUXB |grep ^easybuild.*\.eb\$ |awk '{print "basename "$0}'|sh)

2. Setup EB and build

for ebfile in $eb_list ;do

 eb $ebfile -r --force

done

jenkins + eb + github 29

 Why using EasyBuild?

 EB + Cray Prog Env

 External metadata / modules

 EB @ CSCS

 Piz Kesch & Escha use case

 Cray CS-Storm

 Piz Daint use case

 Cray XC

 Github production repository

 Building software with Jenkins

 Conclusion

 EasyBuild @ CSCS 30

Outline

Conclusion

 Current EB installation is ready for application level

 Validation with

 Python : Piz Daint and Escha/Kesch

 Escha/Kesch: complete software stack built with gmvolf toolchain

 Continuous validation techniques can be easily applied

 Testing builds across all systems with Jenkins

 weekly builds for every machine

 Changes/errors on the PrgEnv can be detected early

 In order to get the most out of EasyBuild

 We need to have consistent PrgEnv across

 OK on Cray systems

 Not currently true on non-Cray

 Achievable with EasyBuild

EasyBuild @ CSCS 31

Work in progress

 Stable Cray support (now completed):

 https://github.com/hpcugent/easybuild-framework/issues/1390

 Rpath support to be tested on Cray systems

 Compatible build description with similar projects (Spack)

 Lower the bar for new users

 For one build users need easyconfig + easyblock + framework

 Extended-dry-run is currently the best approach

EasyBuild @ CSCS 32

https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390

What can be improved?

 Implement new command line options for dependencies:

 --try-dep-version

 Backup of custom easyblocks for reproducibility

 External modules:

 Improve error reporting for missing modules
 Generic/versionless entries on the metadata file

 Add more flexibility to the toolchain definition:

 Integration of EasyBuild with existing compilers

 Command line option to define default module version for builds

EasyBuild @ CSCS 33

Useful links for EasyBuild @ CSCS

 EasyBuild @ CSCS Wiki on GitHub

 https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild

 Easyconfig files repositories

 List of production builds performed by Jenkins

 https://github.com/eth-cscs/production/tree/master/jenkins-builds

 Custom easyconfigs:
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs

 Custom easyblocks:

 https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

EasyBuild @ CSCS 34

https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

Do you want to know more about EasyBuild on Cray?

 Paper on the Cray User Group 2016

 Making Scientific Software Installation Reproducible On Cray
Systems Using EasyBuild

 https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145
.pdf

 EasyBuild website: http://hpcugent.github.io/easybuild

 EasyBuild documentation: http://easybuild.readthedocs.org

 Stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

 EasyBuild mailing list: easybuild@lists.ugent.be -
https://lists.ugent.be/wws/subscribe/easybuild

 Twitter: http://twitter.com/easy_build

 IRC: #easybuild on chat.freenode.net

EasyBuild @ CSCS 35

https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
http://hpcugent.github.io/easybuild
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org/
http://easybuild.readthedocs.org
http://pypi.python.org/pypi/easybuild
http://pypi.python.org/pypi/easybuild
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
http://twitter.com/easy_build
http://twitter.com/easy_build
http://twitter.com/easy_build

Thank you for your kind attention

