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Why using EasyBuild?

= Lack of standard way to describe build recipes
= Shell scripts, readme files, web/wiki pages, invisible docs

= Software available is very heterogeneous across systems
= Moving users to a different machine requires a lot of work

= Systems upgrades are a huge overhead
= |ots of manual work to re-deploy existing software

= Little collaboration with other sites doing the very same thing
= Advantage to build a network to build HPC scientific applications

\‘o:o CcSCS EasyBuild @ CSCS | 3 ETHziirich
A



EasyBuild advantages

= open source python framework to build scientific software

= maintenance of multiple software deployments easy

downloads, compiles and installs software packages

= resolving dependencies and creating modulefiles too

= adopted by many HPC centres, on Cray systems as well
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Local builds by users with EasyBuild

= $ module load daint-gpu EasyBuild-custom

= $HOME/easybuild/<system-name>/<architecture>
where <architecture> is either <haswell> or <broadwell>

= $ export EASYBUILD PREFIX=/preferred/installation/folder
= $ export EB_ CUSTOM_ REPOSITORY=/cscs/repository/folder
= $ git clone https://github.com/eth-cscs/production.qit

= $ module use $EASYBUILD PREFIX/modules/all

$ module load <modulename>/version

= $HOME folder is by default not readable by other users:
make builds available to each group with read-only access

= http://user.cscs.ch/compiling and optimizing/easybuild framework/index.html

'
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EasyBuild mailing list contributors

Greenland V;.s
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Software stack on a Cray XC

For example PE 2016.11 [1]
=  Cray Compiling Environment - CCE 8.5.5

=  Cray Message Passing Toolkit - MPT 7.5.0 CrayGNU-2016.11.eb f05s-2016.04.eb

= Perftools 6.4.3 « GCC/5.3.0
PrgEnv-gnu S

=  Cray Scientific and Math Libraries - CSML J gCC/g 3.0 (binutils/2.26)

. LibSci 16.11.1 . «  OpenMPI/1.10.2
o e cray-mpich/7.5.0

= LibSci_ACC 16.11.1 L « OpenBLAS/0.2.18
- PETSc3.7.2.1 « cray-libsci/16.11.1 Scal APACK/2.0.2
= Trilinos 12.6.3.3 (BLAS, LAPACK, N
= TPSL16.07.1 ScaLAPACK, BLACS) AR CE50)
= FFTW 3.3.4.10 ’ FFTW/3.3.4

= [1] http://docs.cray.com/books/S-9408-1611/
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EasyBuild Enhancements for Cray Systems

1. Support for external module files
2. Definition of Cray-specific toolchains

3. Custom easyblock for Cray toolchains

= Various smaller enhancements specific to the Cray
environment

= Thanks to Peter Foral & Kenneth Hoste

'
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1. Support for external module files

EasyBuild relies on the (environment) modules in a
fundamental way as they contain information about the
Installed software they correspond to.

= EasyBuild can now leverage modules that were not
generated by EasyBuild for example as part of the Cray PE.

= this includes support that was added to supply metadata for
external modules, so that EasyBuild can be made aware of

= the software name(s), version(s) and installation prefix

= since EasyBuild version 2.7.0, a file containing metadata for
selected modules provided by the Cray PE is included as
part of EasyBuild.
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2. Custom easyblock for Cray toolchains

= This easyblock defines the version pinned components
that make up the toolchain

= Easyblock implements logic to render the module files for
the EasyBuild Cray toolchains

= ensures that switching toolchain components works
= avoids the need to run module purge

= New toolchain version combinations can then be placed in
easyconfig file to ease creation of new toolchains.
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3. Definition of Cray-specific Toolchains

Cray-specific toolchains have been implemented for each PrgEnv module:
= CrayCCE for PrgEnv-cray

= CrayGNU for PrgEnv-gnu

= Craylntel for PrgEnv-intel

= CrayPGl for PrgEnv-pgi

= Compiler component of the toolchains EasyBuild leverages the compiler
wrappers provided by the Cray PE and EasyBuild exposes

= $CC, $CXX, $CFLAGS, $CXXFLAGS, $F77
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Overview of CSCS HPC systems

Piz Daint User Lab 1 GPU Cray XC50
Monch PASC projects 0 NEC Intel lvyBridge
Escha Meteo Swiss 16 GPU Cray CS-Storm
Kesch Meteo Swiss 16 GPU Cray CS-Storm
Leone Large Memory 1 GPU HP DL 360 Gen 9
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Piz Kesch & Escha use case
(MeteoSwiss / Cray CS-Storm)

1] ] 11 ] H H H ' l\\ e |
Kesch” and "Es-cha” consist of identical systems ’ o

(production and failover), each comprising:

Cray CS-Storm: 12 nodes 7

« 2 X Intel Haswell E5-2690v3 2.6 GHz 12-core
CPUs per node
 total of 24 E5-2690v3 processors
« 256 GB 2133 MHz DDR4 memory per node
« totalof 3TB
8 NVIDIA® Tesla® K80 GPU devices per node
 total of 192 GPUs

|!|a-

MeteoSwiss, the Swiss national weather forecasting
service, hosts their dedicated production systems at
Cray CS-Storm at CSCS, Lugano.

<
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Piz Kesch & Escha use case
(MeteoSwiss / Cray CS-Storm)

= Cray PE is partially supported on the CS-Storm series:
= PrgEnv-cray is available but not GNU or Intel

System provided GCC-based compiler stack was unable to assemble
optimized (AVX2) instructions for system's Intel Haswell processor.

= GNU binutils was too old

While waiting for a definitive fix from Cray...

= The whole software stack required by MeteoSwiss was deployed using
EasyBuild
= Using a standard open source toolchain (gmvolf)

EasyBuild software stack now in production since September/2015
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Piz Daint

Cray XC50/XC40

XC50 Compute Intel® Xeon® E5-2690 v3 (Haswell) @ 2.60GHz (12 cores,
Nodes 64GB RAM) and
NVIDIA® Tesla® P100 16GB
XC40 Compute Intel® Xeon® E5-2695 v4 (Broadwell) @ 2.10GHz (18 cores,
Nodes 64/128 GB RAM)
Login Nodes Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256
GB RAM)
Interconnect Aries routing and communications ASIC, and Dragonfly
Configuration network topology

Scratch capacity 6.2 PB (Luster / Sonexion 3000)

e
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Piz Daint

= #38 Top 500

= #1 in Europe
= 9779.0 PFLOPS

= #2 Green 500
= 7453.5 MFLOPS/W
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Available software on Cray using EasyBuild

» Stock EasyBuild repository ~ * £SCS Production Github

. . repository
Python, including | - Amber[¥
= accelerated numpy + scipy, = CDO
hopy, ... = CPMD
= WRF = LAMMPS[*]
= CP2K[*] = NCL
= GROMACSI[*] " NCO =
= Boost = ParaView[*]
= QOctave
= GSL = QuantumESPRESSO[*]
= R
= Scalasca
= ScoreP
= TensorFlow[*]
= VASP[*]
= Visit
= VMD[*]
= VTK[]
[*] = GPU-enabled recipe available
% cscs EasyBuid @ CSCS | 19 ETH:iirich

¢,

AN


https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production

Apps and Users using xalt statistics
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Github, EasyBuild & Continuous Integration

= Github repository hosting all recipes in production on Piz Daint

= https://github.com/eth-cscs/production
= Recipes go through a reviewing process (standard PR procedure)

= Automatic checking of build recipes on Piz Daint (by Jenkins)

= GitHub Pull Request Builder Plugin for Jenkins
= https://github.com/janinko/ghprb
= Less error-prone & improved reproducibility
= Robot ensures that recipes work without any extra tweaking
= Such as exports and custom .bashrc files

=  Autonomous deployment of software/modules on production
(Jenkins)
= List of easyconfig files is automatically deployed by Jenkins

= For example, list of GPU-enabled software stack for the P100 partition
= https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

¢
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Final comments: EasyBuild & Cray

= Proprietary and FOSS can co-exist

= Best of two worlds

= |ntegrates new applications with optimized proprietary stack
= Support is assured by Cray and also by the enthusiasts of the EB
community

= Minimizes risks of vendor lock-In

= EasyBuild provides alternatives in case of issues with software
provided by Cray

\‘o:o CcSCS EasyBuild @ CSCS | 22 ETHziirich
A



Outline

= Why using EasyBuild?

= EB + Cray Prog Env
= External metadata / modules

= EB @ CSCS

= Piz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
= Github production repository

= Building software with Jenkins

= Conclusion

\\b:o cscs EasyBuild @ CSCS | 23 ETHziirich



Jenkins

= Jenkins is used at CSCS for continuous integration/validation

= Advantages:

= Several plugins are available
= easily configured to run tasks by ssh anywhere
= Jogs for all of your executions

= info on past jobs and logs always accessible through the web interface
= Usage examples:

= Development/Integration:

= Checkout svn/git repositories to automatically build on different platforms
= Validation

= Periodically run unit tests
= Monitoring

= Periodically run sanity and performance tests (*regression®*)
= Run your favorite script or app

= example at CSCS: driving the acceptance tests of new HPC systems

\‘o:o CcSCS EasyBuild @ CSCS | 24 ETHziirich
A



Monitoring the Lustre scratch performance
with a cray-netcdf-hdf5parallel write test

Build Time Trend

Build 1t Duration
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Q8
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Slave
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master
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Building the EasyBuild software stack on
Escha and Kesch (Meteo Swiss system)

S w Name | Last Success
&  RegressionEBKescn 20 hr - #15

Build Time Trend

Build 1t Duration Slave
o #11 1 hr 47 min master
¢ #13 1 hr 48 min master
o #15 1 hr 48 min master

A
N X g CSCsS

mins
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Jenkins with EasyBuild: workflow for recipes

= Testing new easyconfig files on systems with EasyBuild

= Workflow setup

1. Create a folder accessible by jenscscs to store the .eb files

= /path/to/eb-files/
2. Create a jenkins project adding the target test system

= CrayGNU = daint
» foss/2015b = monch
3. Add custom commands to the “Execute shell”
= module load EasyBuild-custom
= find /path/to/eb-files/ -name *CrayGNU-5.2.40*.eb' -exec eb {} "-r -f" \;

= Usage

1. Copy .eb files to /path/to/eb-files/
2. Go to Jenkins and click on “Build now”
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Jenkins + Github + EasyBuild Integration:
Jenkins server setup

= (optional) Setup remote slaves

= By default jenkins will run jobs on the same host as the apache
Instance

= |f you wish to perform builds on a remote host, you need to add
‘slave nodes’
= Manage Jenkins > Manage nodes > new node

= |nstall Pull request builder plugin
= Manage Jenkins > Manage Plugins > Available
= Github integration setup

= Create a ‘jenkins’ user on github with permissions to write comments on your
project

= (you don’t want to use your private Github account)

= Jenkins > Manage Jenkins > Githup Pull Request Builder
= Add/test credentials
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Jenkins + Github + EasyBuild Integration:
Jenkins project setup

Create a new ‘multi-configuration’ project

Section “Source code management”

= Add your github repository to “Repository URL”
= Branch Specifier (blank for 'any’): ${ghprbActualCommit}

Section “Build Triggers”

= Enable GH PR builder and set admin lists (github users white list)
Section “Configuration Matrix”

= Select node(s) under Slaves > Node/label

Section “Build”

= Add build step > Execute shell

1. Select eb files to build, comparing with master for new/modified .eb
eb_list=$(git diff orlgln/master HEAD --name-only --oneline --no- merges - -diff-
filter=ACMRTUXB |grep “easybuild.*\.eb\$ |[awk {print "basename "$0}'|sh)

2.  Setup EB and build
for ebfile in $eb _list ;do
eb $ebfile -r --force

done
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Conclusion

= Current EB installation is ready for application level

= Validation with
= Python : Piz Daint and Escha/Kesch
= Escha/Kesch: complete software stack built with gmvolf toolchain

= Continuous validation techniques can be easily applied

= Testing builds across all systems with Jenkins

= weekly builds for every machine
= Changes/errors on the PrgEnv can be detected early

= |n order to get the most out of EasyBuild

= We need to have consistent PrgEnv across
= OK on Cray systems

= Not currently true on non-Cray
= Achievable with EasyBuild
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Work in progress

Stable Cray support (now completed).
= https://qithub.com/hpcugent/easybuild-framework/issues/1390

= Rpath support to be tested on Cray systems

= Compatible build description with similar projects (Spack)

= | ower the bar for new users

= For one build users need easyconfig + easyblock + framework
= Extended-dry-run is currently the best approach

'
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What can be improved?

= Implement new command line options for dependencies:
= --try-dep-version

Backup of custom easyblocks for reproducibility

External modules:

= |Improve error reporting for missing modules
= Generic/versionless entries on the metadata file

= Add more flexibility to the toolchain definition:
= Integration of EasyBuild with existing compilers

= Command line option to define default module version for builds
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Useful links for EasyBuild @ CSCS

= EasyBuild @ CSCS Wiki on GitHub

= https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild

= Easyconfig files repositories

= List of production builds performed by Jenkins
= https://github.com/eth-cscs/production/tree/master/jenkins-builds

= Custom easyconfigs:
https://qgithub.com/eth-cscs/production/tree/master/easybuild/easyconfigs

= Custom easyblocks:
= https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

g
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Do you want to know more about EasyBuild on Cray?

= Paper on the Cray User Group 2016

= Making Scientific Software Installation Reproducible On Cray
Systems Using EasyBuild
= https://cug.org/proceedings/cug2016 proceedings/includes/files/papl145

-pdf

= EasyBuild website: http://hpcugent.github.io/easybuild

= EasyBuild documentation: http://easybuild.readthedocs.org

= Stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

= EasyBuild mailing list: easybuild@Ilists.ugent.be -
https://lists.ugent.be/wws/subscribe/easybuild

= Twitter: http://twitter.com/easy build

= |RC: #easybuild on chat.freenode.net
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