ETHzurich

&_ CscCs
(. Centro Svizzero di Calcolo Scientifico

Swiss National Supercomputing Centre

EasyBuild @ CSCS

2"d EasyBuild User Meeting
February 8" — 10t 2017, Juelich (Germany)
Luca Marsella and Guilherme Peretti-Pezzi - Scientific Computing Support (CSCS)

Outline

* Why using EasyBuild?

= EB + Cray Prog Env
= External metadata / modules

= EB @ CSCS

= Piz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
= Github production repository

= Building software with Jenkins

= Conclusion

\\b:o cscs EasyBuild @ CSCS | 2 ETHziirich

Why using EasyBuild?

= Lack of standard way to describe build recipes
= Shell scripts, readme files, web/wiki pages, invisible docs

= Software available is very heterogeneous across systems
= Moving users to a different machine requires a lot of work

= Systems upgrades are a huge overhead
= |ots of manual work to re-deploy existing software

= Little collaboration with other sites doing the very same thing
= Advantage to build a network to build HPC scientific applications

\‘o:o CcSCS EasyBuild @ CSCS | 3 ETHziirich
A

EasyBuild advantages

= open source python framework to build scientific software

= maintenance of multiple software deployments easy

downloads, compiles and installs software packages

= resolving dependencies and creating modulefiles too

= adopted by many HPC centres, on Cray systems as well

\‘o:o CcSCS EasyBuild @ CSCS | 4 ETHziirich
A

Local builds by users with EasyBuild

= $ module load daint-gpu EasyBuild-custom

= $HOME/easybuild/<system-name>/<architecture>
where <architecture> is either <haswell> or <broadwell>

= $ export EASYBUILD PREFIX=/preferred/installation/folder
= $ export EB_ CUSTOM_ REPOSITORY=/cscs/repository/folder
= $ git clone https://github.com/eth-cscs/production.qit

= $ module use $EASYBUILD PREFIX/modules/all

$ module load <modulename>/version

= $HOME folder is by default not readable by other users:
make builds available to each group with read-only access

= http://user.cscs.ch/compiling and optimizing/easybuild framework/index.html

'

% CSCS EasyBuid @ CSCS | 5 ETHziirich

AN
AN

¢,

https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
https://github.com/eth-cscs/production.git
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html
http://user.cscs.ch/compiling_and_optimizing/easybuild_framework/index.html

EasyBuild mailing list contributors

Greenland V;.s

-

=
~

.

< :0 cscs EasyBuild @ CSCS | 6 ETHziirich

Outline

= Why using EasyBuild?

= EB + Cray Prog Env
= External metadata/ modules

= EB @ CSCS

= Piz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
= Github production repository

= Building software with Jenkins

= Conclusion

\\b:o cscs EasyBuild @ CSCS | 7 ETHziirich

Software stack on a Cray XC

For example PE 2016.11 [1]
= Cray Compiling Environment - CCE 8.5.5

= Cray Message Passing Toolkit - MPT 7.5.0 CrayGNU-2016.11.eb f05s-2016.04.eb

= Perftools 6.4.3 « GCC/5.3.0
PrgEnv-gnu S

= Cray Scientific and Math Libraries - CSML J gCC/g 3.0 (binutils/2.26)

. LibSci 16.11.1 . « OpenMPI/1.10.2
o e cray-mpich/7.5.0

= LibSci_ACC 16.11.1 L « OpenBLAS/0.2.18
- PETSc3.7.2.1 « cray-libsci/16.11.1 Scal APACK/2.0.2
= Trilinos 12.6.3.3 (BLAS, LAPACK, N
= TPSL16.07.1 ScaLAPACK, BLACS) AR CE50)
= FFTW 3.3.4.10 ’ FFTW/3.3.4

= [1] http://docs.cray.com/books/S-9408-1611/

\‘o:o CcSCS EasyBuild @ CSCS | 8 ETHziirich
A

http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
http://docs.cray.com/books/S-9408-1611/
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/eth-cscs/production/blob/master/easybuild/easyconfigs/c/CrayGNU/CrayGNU-2016.11.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb
https://github.com/hpcugent/easybuild-easyconfigs/blob/master/easybuild/easyconfigs/f/foss/foss-2016.04.eb

EasyBuild Enhancements for Cray Systems

1. Support for external module files
2. Definition of Cray-specific toolchains

3. Custom easyblock for Cray toolchains

= Various smaller enhancements specific to the Cray
environment

= Thanks to Peter Foral & Kenneth Hoste

'

& CSCS EasyBuild @ CSCS | 9 ETH:iirich

AN
AN

¢,

1. Support for external module files

EasyBuild relies on the (environment) modules in a
fundamental way as they contain information about the
Installed software they correspond to.

= EasyBuild can now leverage modules that were not
generated by EasyBuild for example as part of the Cray PE.

= this includes support that was added to supply metadata for
external modules, so that EasyBuild can be made aware of

= the software name(s), version(s) and installation prefix

= since EasyBuild version 2.7.0, a file containing metadata for
selected modules provided by the Cray PE is included as
part of EasyBuild.

\‘o:o CcSCS EasyBuild @ CSCS | 10 ETHziirich
A

https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg
https://github.com/hpcugent/easybuild-framework/blob/master/etc/cray_external_modules_metadata.cfg

2. Custom easyblock for Cray toolchains

= This easyblock defines the version pinned components
that make up the toolchain

= Easyblock implements logic to render the module files for
the EasyBuild Cray toolchains

= ensures that switching toolchain components works
= avoids the need to run module purge

= New toolchain version combinations can then be placed in
easyconfig file to ease creation of new toolchains.

\‘o:o CcSCS EasyBuild @ CSCS | 11 ETHziirich
A

3. Definition of Cray-specific Toolchains

Cray-specific toolchains have been implemented for each PrgEnv module:
= CrayCCE for PrgEnv-cray

= CrayGNU for PrgEnv-gnu

= Craylntel for PrgEnv-intel

= CrayPGl for PrgEnv-pgi

= Compiler component of the toolchains EasyBuild leverages the compiler
wrappers provided by the Cray PE and EasyBuild exposes

= $CC, $CXX, $CFLAGS, $CXXFLAGS, $F77

\‘o:o CcSCS EasyBuild @ CSCS | 12 ETHziirich
A

Outline

9
\\).0 CSCS

EasyBuild @ CSCS | 13

Why using EasyBuild?

EB + Cray Prog Env
= External metadata / modules

EB @ CSCS

= Pjz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
» Github production repository

Building software with Jenkins

Conclusion

ETH:zurich

Overview of CSCS HPC systems

Piz Daint User Lab 1 GPU Cray XC50
Monch PASC projects 0 NEC Intel lvyBridge
Escha Meteo Swiss 16 GPU Cray CS-Storm
Kesch Meteo Swiss 16 GPU Cray CS-Storm
Leone Large Memory 1 GPU HP DL 360 Gen 9
¥% cscs EasyBuild @ CSCS | 14 ETHziirich

¢,

AN

Piz Kesch & Escha use case
(MeteoSwiss / Cray CS-Storm)

1]] 11] H H H ' l\\ e |
Kesch” and "Es-cha” consist of identical systems ’ o

(production and failover), each comprising:

Cray CS-Storm: 12 nodes 7

« 2 X Intel Haswell E5-2690v3 2.6 GHz 12-core
CPUs per node
 total of 24 E5-2690v3 processors
« 256 GB 2133 MHz DDR4 memory per node
« totalof 3TB
8 NVIDIA® Tesla® K80 GPU devices per node
 total of 192 GPUs

|!|a-

MeteoSwiss, the Swiss national weather forecasting
service, hosts their dedicated production systems at
Cray CS-Storm at CSCS, Lugano.

<

¥ @ CSCS EasyBuild @ CSCS | 15 ETH:zirich

o%

Piz Kesch & Escha use case
(MeteoSwiss / Cray CS-Storm)

= Cray PE is partially supported on the CS-Storm series:
= PrgEnv-cray is available but not GNU or Intel

System provided GCC-based compiler stack was unable to assemble
optimized (AVX2) instructions for system's Intel Haswell processor.

= GNU binutils was too old

While waiting for a definitive fix from Cray...

= The whole software stack required by MeteoSwiss was deployed using
EasyBuild
= Using a standard open source toolchain (gmvolf)

EasyBuild software stack now in production since September/2015

\‘o:o CcSCS EasyBuild @ CSCS | 16 ETHziirich
A

Piz Daint

Cray XC50/XC40

XC50 Compute Intel® Xeon® E5-2690 v3 (Haswell) @ 2.60GHz (12 cores,
Nodes 64GB RAM) and
NVIDIA® Tesla® P100 16GB
XC40 Compute Intel® Xeon® E5-2695 v4 (Broadwell) @ 2.10GHz (18 cores,
Nodes 64/128 GB RAM)
Login Nodes Intel® Xeon® CPU E5-2650 v3 @ 2.30GHz (10 cores, 256
GB RAM)
Interconnect Aries routing and communications ASIC, and Dragonfly
Configuration network topology

Scratch capacity 6.2 PB (Luster / Sonexion 3000)

e

% cscs EasyBuild @ CSCS | 17 ETHziirich

AN

¢,

Piz Daint

= #38 Top 500

= #1 in Europe
= 9779.0 PFLOPS

= #2 Green 500
= 7453.5 MFLOPS/W

& CSCS EasyBuild @ CSCS | 18 ETHzirich

Available software on Cray using EasyBuild

» Stock EasyBuild repository ~ * £SCS Production Github

. . repository
Python, including | - Amber[¥
= accelerated numpy + scipy, = CDO
hopy, ... = CPMD
= WRF = LAMMPS[*]
= CP2K[*] = NCL
= GROMACSI[*] " NCO =
= Boost = ParaView[*]
= QOctave
= GSL = QuantumESPRESSO[*]
= R
= Scalasca
= ScoreP
= TensorFlow[*]
= VASP[*]
= Visit
= VMD[*]
= VTK[]
[*] = GPU-enabled recipe available
% cscs EasyBuid @ CSCS | 19 ETH:iirich

¢,

AN

https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/hpcugent/easybuild-easyconfigs
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production

Apps and Users using xalt statistics

Top Ten Executables

38 N 28,265
10,...
Active Users
I Users Running Jobs [l Users Compiling Codes —— Average
200
CP2K*
5,0... SENE
AIMS* Q-ESPRESSO* 150
S 4
< 3
e 2
3 S 100
:fe: VASP* é
8 . 3
o
50
1,0...
: WRF* 0
2017-01-10 2017-01-16 2017-01-23 2017-01-30 2017-02-06
DateTimeRange
100 1,000 10,000 100,000 1,000,000
Number of Jobs (log)

\\b:o cscs EasyBuild @ CSCS | 20 ETHziirich

Github, EasyBuild & Continuous Integration

= Github repository hosting all recipes in production on Piz Daint

= https://github.com/eth-cscs/production
= Recipes go through a reviewing process (standard PR procedure)

= Automatic checking of build recipes on Piz Daint (by Jenkins)

= GitHub Pull Request Builder Plugin for Jenkins
= https://github.com/janinko/ghprb
= Less error-prone & improved reproducibility
= Robot ensures that recipes work without any extra tweaking
= Such as exports and custom .bashrc files

= Autonomous deployment of software/modules on production
(Jenkins)
= List of easyconfig files is automatically deployed by Jenkins

= For example, list of GPU-enabled software stack for the P100 partition
= https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

¢

3,

@®@® CSCS EasyBuid @ CSCS | 21 ETHzurich

A

https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/eth-cscs/production
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/janinko/ghprb
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu
https://github.com/eth-cscs/production/blob/master/jenkins-builds/6.0.UP02-2016.11-gpu

Final comments: EasyBuild & Cray

= Proprietary and FOSS can co-exist

= Best of two worlds

= |ntegrates new applications with optimized proprietary stack
= Support is assured by Cray and also by the enthusiasts of the EB
community

= Minimizes risks of vendor lock-In

= EasyBuild provides alternatives in case of issues with software
provided by Cray

\‘o:o CcSCS EasyBuild @ CSCS | 22 ETHziirich
A

Outline

= Why using EasyBuild?

= EB + Cray Prog Env
= External metadata / modules

= EB @ CSCS

= Piz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
= Github production repository

= Building software with Jenkins

= Conclusion

\\b:o cscs EasyBuild @ CSCS | 23 ETHziirich

Jenkins

= Jenkins is used at CSCS for continuous integration/validation

= Advantages:

= Several plugins are available
= easily configured to run tasks by ssh anywhere
= Jogs for all of your executions

= info on past jobs and logs always accessible through the web interface
= Usage examples:

= Development/Integration:

= Checkout svn/git repositories to automatically build on different platforms
= Validation

= Periodically run unit tests
= Monitoring

= Periodically run sanity and performance tests (*regression®*)
= Run your favorite script or app

= example at CSCS: driving the acceptance tests of new HPC systems

\‘o:o CcSCS EasyBuild @ CSCS | 24 ETHziirich
A

Monitoring the Lustre scratch performance
with a cray-netcdf-hdf5parallel write test

Build Time Trend

Build 1t Duration

9
\\).0 CSCS

Q@ #2
@#
Q@ #4
@#5
@ #6
Q@ #7
Q8
@ #9
@ #10
@ #11
@ #12
@ #13
@ #14
@ #15
@ #16
@ #17
@ #18
@ #19
@ #20

15 min
16 min
28 min
30 min
22 min
20 min
20 min
20 min
19 min
17 min
19 min
18 min
24 min
18 min
12 min
11 min
29 min
39 min
10 min

Slave

master
master
master
master
master
master
master
master
master
master
master
master
master
master
master
master
master
master
master

21
90+
85+
80+
751
70+
65+
60+
55+
50
451
40 -
351
301-
251
2014
1538
10-

mins

EasyBuild @ CSCS | 25

ETH:zurich

Building the EasyBuild software stack on
Escha and Kesch (Meteo Swiss system)

S w Name | Last Success
& RegressionEBKescn 20 hr - #15

Build Time Trend

Build 1t Duration Slave
o #11 1 hr 47 min master
¢ #13 1 hr 48 min master
o #15 1 hr 48 min master

A
N X g CSCsS

mins

EasyBuild @ CSCS | 26

Last Failure Last Duration

N/A 1 hr 49 min @

ETH:zurich

Jenkins with EasyBuild: workflow for recipes

= Testing new easyconfig files on systems with EasyBuild

= Workflow setup

1. Create a folder accessible by jenscscs to store the .eb files

= /path/to/eb-files/
2. Create a jenkins project adding the target test system

= CrayGNU = daint
» foss/2015b = monch
3. Add custom commands to the “Execute shell”
= module load EasyBuild-custom
= find /path/to/eb-files/ -name *CrayGNU-5.2.40*.eb' -exec eb {} "-r -f" \;

= Usage

1. Copy .eb files to /path/to/eb-files/
2. Go to Jenkins and click on “Build now”

\‘o:o CcSCS EasyBuild @ CSCS | 27 ETHziirich
A

Jenkins + Github + EasyBuild Integration:
Jenkins server setup

= (optional) Setup remote slaves

= By default jenkins will run jobs on the same host as the apache
Instance

= |f you wish to perform builds on a remote host, you need to add
‘slave nodes’
= Manage Jenkins > Manage nodes > new node

= |nstall Pull request builder plugin
= Manage Jenkins > Manage Plugins > Available
= Github integration setup

= Create a ‘jenkins’ user on github with permissions to write comments on your
project

= (you don’t want to use your private Github account)

= Jenkins > Manage Jenkins > Githup Pull Request Builder
= Add/test credentials

\‘0:0 CSCS jenkins + eb + github | 28 ETHzlrich
QO

Jenkins + Github + EasyBuild Integration:
Jenkins project setup

Create a new ‘multi-configuration’ project

Section “Source code management”

= Add your github repository to “Repository URL”
= Branch Specifier (blank for 'any’): ${ghprbActualCommit}

Section “Build Triggers”

= Enable GH PR builder and set admin lists (github users white list)
Section “Configuration Matrix”

= Select node(s) under Slaves > Node/label

Section “Build”

= Add build step > Execute shell

1. Select eb files to build, comparing with master for new/modified .eb
eb_list=$(git diff orlgln/master HEAD --name-only --oneline --no- merges - -diff-
filter=ACMRTUXB |grep “easybuild.*\.eb\$ |[awk {print "basename "$0}'|sh)

2. Setup EB and build
for ebfile in $eb _list ;do
eb $ebfile -r --force

done

\‘0:0 CSCS jenkins + eb + github | 29 ETHzlrich
QO

Outline

= Why using EasyBuild?

= EB + Cray Prog Env
= External metadata / modules

= EB @ CSCS

= Piz Kesch & Escha use case

= Cray CS-Storm
= Pjz Daint use case

= Cray XC
= Github production repository

= Building software with Jenkins

= Conclusion

\\b:o cscs EasyBuild @ CSCS | 30 ETHziirich

Conclusion

= Current EB installation is ready for application level

= Validation with
= Python : Piz Daint and Escha/Kesch
= Escha/Kesch: complete software stack built with gmvolf toolchain

= Continuous validation techniques can be easily applied

= Testing builds across all systems with Jenkins

= weekly builds for every machine
= Changes/errors on the PrgEnv can be detected early

= |n order to get the most out of EasyBuild

= We need to have consistent PrgEnv across
= OK on Cray systems

= Not currently true on non-Cray
= Achievable with EasyBuild

\‘o:o CcSCS EasyBuild @ CSCS | 31 ETHziirich
A

Work in progress

Stable Cray support (now completed).
= https://qithub.com/hpcugent/easybuild-framework/issues/1390

= Rpath support to be tested on Cray systems

= Compatible build description with similar projects (Spack)

= | ower the bar for new users

= For one build users need easyconfig + easyblock + framework
= Extended-dry-run is currently the best approach

'

% CSCS EasyBuid @ CSCS | 32 ETHziirich

AN
AN

¢,

https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390
https://github.com/hpcugent/easybuild-framework/issues/1390

What can be improved?

= Implement new command line options for dependencies:
= --try-dep-version

Backup of custom easyblocks for reproducibility

External modules:

= |Improve error reporting for missing modules
= Generic/versionless entries on the metadata file

= Add more flexibility to the toolchain definition:
= Integration of EasyBuild with existing compilers

= Command line option to define default module version for builds

\‘o:o CcSCS EasyBuild @ CSCS | 33 ETHziirich
A

Useful links for EasyBuild @ CSCS

= EasyBuild @ CSCS Wiki on GitHub

= https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild

= Easyconfig files repositories

= List of production builds performed by Jenkins
= https://github.com/eth-cscs/production/tree/master/jenkins-builds

= Custom easyconfigs:
https://qgithub.com/eth-cscs/production/tree/master/easybuild/easyconfigs

= Custom easyblocks:
= https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

g

% cscs EasyBuild @ CSCS | 34 ETHziirich

AN

¢,

https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/wiki/User-instructions-for-EasyBuild
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/jenkins-builds
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyconfigs
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks
https://github.com/eth-cscs/production/tree/master/easybuild/easyblocks

Do you want to know more about EasyBuild on Cray?

= Paper on the Cray User Group 2016

= Making Scientific Software Installation Reproducible On Cray
Systems Using EasyBuild
= https://cug.org/proceedings/cug2016 proceedings/includes/files/papl145

-pdf

= EasyBuild website: http://hpcugent.github.io/easybuild

= EasyBuild documentation: http://easybuild.readthedocs.org

= Stable EasyBuild releases: http://pypi.python.org/pypi/easybuild

= EasyBuild mailing list: easybuild@Ilists.ugent.be -
https://lists.ugent.be/wws/subscribe/easybuild

= Twitter: http://twitter.com/easy build

= |RC: #easybuild on chat.freenode.net

\‘:o cscs EasyBuild @ CSCS | 35 ETHziirich
AN

https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap145.pdf
http://hpcugent.github.io/easybuild
http://hpcugent.github.io/easybuild
http://easybuild.readthedocs.org/
http://easybuild.readthedocs.org
http://pypi.python.org/pypi/easybuild
http://pypi.python.org/pypi/easybuild
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
mailto:easybuild@lists.ugent.be
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
https://lists.ugent.be/wws/subscribe/easybuild
http://twitter.com/easy_build
http://twitter.com/easy_build
http://twitter.com/easy_build

Centro Svizzero di Calcolo Scientifico
Swiss National Supercomputing Centre

§ e CSCS ETHziirich

'?Jmmmndm‘f'(m.ﬁo i
,fmuaeo.'. r‘ma-r(/cm";
Sy ol Coo e
ALY

Thank you for your kind attention

