
Containers In HPC

Singularity
Michael Bauer

About Me

Michael Bauer

@bauerm97 on GitHub
bauerm@umich.edu

What are Containers?

What is a Virtual Machine?
“In computing, a virtual machine (VM) is an emulation of a computer system.
Virtual machines are based on computer architectures and provide
functionality of a physical computer.”

Examples:

Pros Cons
● Run different OS on one set of

hardware
● Save money (e.g. buy one

laptop, have Windows, OSX,
and Linux)

● Easy maintenance

● Slower performance
● Memory/storage reqs.

What are containers?
● Similar goal as VMs
● No kernel emulation
● Not architecture level virtualization, but rather software

level

What does that mean?
● Don’t waste extra ~5% performance doing emulation
● Smaller footprint (~500 MB vs ~20 GB VM)
● Very small startup time interval (~1 s vs ~1 min VM)
● Multiple instances can share one “container image”

Containers for Scientific Computing

Why do we want containers in HPC?
● Escape “dependency hell”

● Local and remote code works identically every time

● One file contains everything and can be moved

anywhere

Environment Matters

Needs for HPC containers
● Any user can run containers without special

privileges (root)

● Integrate seamlessly into existing

infrastructure

● Portability between many systems

● Users created and provided containers (no

administrative oversight)

Singularity

Needs for HPC containers
● Any user can run containers without special

privileges (root)

● Integrate seamlessly into existing

infrastructure

● Portability between many systems

● Users created and provided containers (no

administrative oversight)

● Any container can be run by any user - same

user inside container and on host

● No workflow changes necessary to use

● Single .img file contains everything necessary

● Safe to run any container without screening its

contents

Singularity

Basic Usage of Singularity

Singularity Workflow
1. Create image file

$ sudo singularity create [image]
2. Bootstrap image

$ sudo singularity bootstrap [image] [definition.def]
3. Run image

$ singularity shell [image]
$ singularity exec [image] [/path/to/executable]
$ singularity run [image]
$./image

Singularity Workflow

https://asciinema.org/a/100297

https://asciinema.org/a/100297
https://asciinema.org/a/100297

Docker Integration

https://asciinema.org/a/101984

https://asciinema.org/a/101984
https://asciinema.org/a/101984

SLURM Integration
#!/bin/bash -l

#SBATCH --image=~/centos7/latest
#SBATCH -p debug
#SBATCH -N 64
#SBATCH -t 00:20:00
#SBATCH -J my_job
#SBATCH -L SCRATCH
#SBATCH -C haswell

srun -n 4096 ./mycode.exe

ALICE Tier 2 Use Case

GSI Green Cube
Darmstadt
Germany ALICE Detector LHC

Geneva
Switzerland

ALICE Tier 2: Problem
● Run ALICE jobs on ~2k jobs at any time
● Host machines run Debian 7.x kernel 3.16
● ALICE expects Scientific Linux 6 (SL6)
● Library incompatibilities cause frequent errors (much higher than

expected)

ALICE Tier 2: Pre-Singularity Solution
● Correct library versions mounted in Lustre
● SLURM job submission script alters $LD_LIBRARY_PATH to point to Lustre
● And maybe more?

Big Ugly Hack

ALICE Tier 2: Singularity Solution
● Package Scientific Linux 6 into container

● Modify SLURM submission script to run container

● No need to mount Lustre for access to library files

● Can test container locally before deploying to HPC

SLC6
Dockerfile

ALICE GitHub
Repository

Singularity
Build File

Import from
slc6-builder

Container

We are always looking for more
Collaborators!

