
EasyBuild on LUMI one year later:
successes and frustrations

Kurt Lust

LUMI User Support Team (LUST)

University of Antwerp

LUMI: one of the fastest
supercomputers in the world

2

• LUMI is a HPE Cray EX supercomputer
manufactured by Hewlett Packard Enterprise

• Two main compute sections:

• LUMI-C with 1536 2-socket AMD Milan
nodes

• LUMI-G with 2560 nodes with 4 MI250x
GPUs each

450 m2

PINTA-ALA

Computing power

equivalent to

Peak Performance

Modern platform for

High-performance
computing,

Artificial intelligence,

Data analytics

Modern laptop computers

1 500 000
550

Pflop/s

1 system

Based on GPU technology
Size of a tennis court

• Peak vector FP64 performance close to 500
petaflop/s makes the system one of the world’s
fastest

• Roughly one third of Frontier, and same
architecture

• Peak matrix FP64 performance close to 1
exaflop

3

LUMI user support

• Centralized virtual help-desk run by the distributed LUMI
User Support Team

• The model is based on a network of dedicated LUMI experts:
each partner (except one) provides one FTE for the task

• User Support Team also provides end-user training, maintains
the software portfolio and user documentation of the system

• ”Level 3” support (e.g. application enabling,
methodology support) via local centres, the
EuroHPC Competence Centres, a team at HPE
and AMD, and new EuroHPC projects

• National support for issues with accounts and
allocations

Maintain a software stack for…

• A rather experimental and inhomogeneous machine (new interconnect, new
GPU architecture with an immature software ecosystem, some NVIDIA GPUs,
a mix of zen2 and zen3)

• With users that come to LUMI from 11 different channels (not counting
subchannels)

• And this has to be done by a (too) small central support team considering the
expected number of projects and users and the tasks the support team has
• But the consortium should contribute

• Cray Programming Environment is a key part of our system
• And Clang/LLVM is an important compiler for us

• Operational: 4 copies of the software stack due to the file system setup

Lean and customisable

• Small central software stack of high-priority libraries
• Quick updating after installation of a new programming environment

• Other easyconfigs evolve as needed
• Installed in user’s project directory

• Development often driven by request

• Sometimes even very customised setups that we may keep out of the
repositories to avoid confusion

• Managing such evolution in a central installation is hard
• E.g., cannot install over another package while users might be running

• And even harder for us as we have to keep 4 copies in sync

Personal environments

• Every user wants their packages preferably preinstalled in a central stack

• But doesn’t want to be confronted with the packages that someone else needs

• “What modules should I load? I really can’t find my way in this mess…”

• Less problems with version conflicts than in a big central stack

• It is only a matter of time before things become as bad as it is today in
Python

• Having everything in one big stack slows down development tremendously,
especially if you start from the principle that you try to avoid two different
versions of a package (dependency) in a single stack.

• Look at the success of Conda, containers, Python virtual environments, …

• Setup with an Lmod EasyBuild configuration module and software stack
modules that ensure that user installed software blends seamlessly with
centrally installed software.

EasyBuild installation on LUMI

• Software stacks based on the releases of the HPE Cray PE
• Compilers not installed with EasyBuild

• 4 different compilers, 3 hardware platforms

• Toolchains derived from the work done at CSCS

• No hierarchy: Only full toolchains

• Though we are thinking how we could implement something that takes
the role of GCCcore.

• Fix the version of EasyBuild for a given version of the software stack
• Bootstrapped for each version of the LUMI software stack to make those

stacks fully independent of each other

EasyBuild installation on LUMI (2)

• 2 central repositories with various service levels:
• LUMI-SoftwareStack: Repository for the central software stack and some

other packages that we fully support and install centrally

• LUMI-EasyBuild-contrib: Repository for software that we do not want to
install centrally, e.g., because we cannot fully support the package or are not
convinced that the configuration is already OK for a large enough group of
users, or license conditions make it impossible to offer the package to
everybody.

• Would also include “annoying” packages such as OpenFOAM or Yambo
that will probably never make it to the central stack

https://github.com/Lumi-supercomputer/LUMI-SoftwareStack
https://github.com/Lumi-supercomputer/LUMI-EasyBuild-contrib

EasyBuild installation on LUMI (3)

• Configuration modules for EasyBuild to configure for specific tasks
• Single module for the LUMI stacks linked with different names, e.g.,

• EasyBuild-production when installing software in the central stack

• EasyBuild-user to let a user install software

• Single piece of code is more complex but it is easier to ensure consistency of
the settings for central and user/project install of software

• Picks up where to install software from its name and its location in the
module tree

• Installing GROMACS:

$ ml LUMI/22.08 partition/C EasyBuild-user
$ eb GROMACS-2021.4-cpeGNU-22.08-PLUMED-2.7.4-CPU.eb -r

SYSTEM toolchain

• We (ab)use the SYSTEM toolchain and therefore are annoyed that it
doesn’t always work as other toolchains

• Our use case:
• Install software that is available without loading any toolchain or HPE Cray

compiler module

• And we often use static linking for those packages to minimize interactions
with other software on the system

• E.g., a set of build tools available to (almost) all users.

• Developing a GCCcore equivalent may be a partial but not a complete
solution

GPU toolchains

• In the HPE Cray PE ecosystem this is meant to be fairly transparent.

• Same compiler wrappers, but loading a different set of so-called target modules
to reconfigure the wrappers and some GPU-specific modules (for CUDA or ROCm)

• Needed very little work, though may need to think about more toolchain options

• ROCm on LUMI

• Comes pre-packaged with the HPE Cray PE and installs in its default location

• As developers often want a newer version, we build our own ROCm modules also
that resemble the HPE Cray PE modules as much as possible

• ROCm versions limited by the driver version

• So far, things often just work

• Problem with ROCm: Hard-coded paths to the default locations (/opt/rocm-5.2.5)
and sometimes even not version-specific (/opt/rocm).

• Can have performance implications for some software (MIOpen seems to be the
main victim)

But…

• May do a better job with more settings via toolchainopts but would need
to gather more insight in how packages are built.

• EasyBuild does not distinguish enough between languages from the C
family
• Just cstd and no cxxstd, but the same is added to both CFLAGS and
CXXFLAGS…

• COMPILER_C_UNIQUE_FLAGS but could not find a
COMPILER_CXX_UNIQUE_FLAGS

• HIP, SYCL, OpenCL all may require different settings.

• No way to add flags to LDFLAGS (apart from additional –L arguments)

Documentation is everything!

• Make full use of EasyBuild features to include help information in the
Lmod modules.

• On a HPE Cray system users really need to learn to read man pages
again.
• For those used to reading them we do include them in the software

installations also.

• Developed the LUMI Software Library
• Generated from markdown files stored with the easyconfigs

• Idea: Documentation is more likely to be adapted when the software
changes if it is not stored separately

https://lumi-supercomputer.github.io/LUMI-EasyBuild-docs/

But…

• Cannot exploit the Lmod whatis lines enough
• Even though these are just strings in Lmod, Lmod expects “key: value” strings.

• The “Description:” line has a special status in Lmod. Using the same easyconfig
description parameter for whatis and the help block is not a good idea

• The description should probably be the same for all modules with the same
name as sometimes only one is shown, e.g., when using module whatis without
arguments.

• The description in whatis should be short to not screw up the output too much.

• But the description in the help block of a module should be more descriptive
and can give more details about the specific module.

• Suggestion: short_description and use this for whatis if present and if not,
use the regular description (to not break compatibility).

But…

• And the current whatis keyword isn’t optimal either
• Doesn’t enforce the key:value idea.

• As soon as you use it, EasyBuild doesn’t add the data anymore that it would
otherwise add automatically.

• Just an idea: I noticed that at HLRS modules for libraries build with
autotools or CMake contained a line with the arguments that were
passed to those tools so that I could see how the libraries were
configured.

EasyBlocks

• EasyBlocks often fail on LUMI in ways that can be avoided

• Some EasyBlocks are too strict when testing for compilers and fail if it is
not one they recognize
• Understandable if the argument is that we could not test that configuration

• But isn’t a user better served with something that might work than with
something that doesn’t work at all?

• Testing for modules should be done through metadata and not through
module names
• So they would work with external modules also

• It would be great to have a way to recognize moduleless OS dependencies
also through metadata generated on the fly

• A system may use another module name or bundle to provide the software

Module and directory hell

• Arguments in favour of splitting up in many modules
• More manageable chunks for installation

• Arguments against splitting up in too many modules
• Disk capacity is cheap but IOPs are expensive
• Long PATH variables and long link lines are terrible for developers
• Some software expects some components to be together (various netCDF

interfaces)
• Too many modules that few users need explicitly complicate the search for

suitable modules for others
• Easy to overlook dependencies, having software pick up libraries from the system

instead
• What is the point of having packages in separate modules if we want only one

version of each in a software stack?
• You don’t really save space as most basic packages are installed everywhere

anyway

Module and directory hell (2)
• Non-arguments in favour of splitting up

• Better visibility of what is installed

• With appropriate information in module files and/or the use of extensions in Lmod,
module spider is a very powerful tool to find software in bundles

• Don’t install more than what is really needed

• See above: disk space is cheap, IOPs are expensive so it may be better to reduce the
number of directories that have to be searched than the amount of disk space consumed

• But Linux distributions do it too so why would we not mimic that?

• One big difference: Linux distributions do install various packages in the same directory

• Some distributions target very small systems also but that is a non-issue for HPC
systems

• EESSI is probably targeting workstations also but caching is on a file basis anyway so
files that are not needed will not be pulled in?

• If ease of installation in more manageable chunks is the argument then we
need a better way of bundling installations, not more modules

Python and conda with Tykky

• CSC-developed tool to package Conda and pip-installed Python
installations.

• Aim: Reduce load on the Lustre metadata servers

• Approach
• Minimal singularity container (OS dependent)

• Packs the installation in a SquashFS file during creation, mounted in the
container when running

• Creates wrapper scripts for commands in the bin subdirectory to
automatically run them in the container

Python and conda with Tykky (2)

• No need to be able to build containers on the system
• Good for LUMI as fakeroot is currently not enabled

• On LUMI, uses the Cray-provided Python and packages and installs on top
of those

• I have been thinking about ways to interface with EasyBuild
• Generate from an EasyConfig and create a module to put the bin directory in

the search path (but without using EasyBuild to build the software)

• Or even using EasyBuild to build software that is then packaged

• But obviously this would require a good Bundle approach to install all
required software at once.

But basically lack the time to do it.

• docs.csc.fi/computing/containers/tykky/

https://docs.csc.fi/computing/containers/tykky/

Where is LLVM? Where is MPICH?

• Support for LLVM very limited at the moment
• Understandable due to the confusing state of Fortran support

• But it is the number one compiler base for HPC and even more so outside HPC

• More and more vendor compilers build on Clang/LLVM

• Better platform for compiler research so it attracts more developers

• LLVM ecosystem is the basis for most GPU development (including SYCL)

• Where is MPICH?
• Vendor MPIs often derived from MPICH, particularly from network vendors

(with the exception of Mellanox/NVIDIA InfiniBand)

• OpenMPI is behind in GPU support for networks that do not support UCX

• Looks like things have not yet changed in 5.0

Stop bashing spack!

• Our experience is that with Spack we often have a solution much quicker!
• Comparing someone who is experienced with Spack doing the Spack work and

someone who is experienced with EasyBuild doing the EasyBuild work

• Even though the API changes from version to version, the API for features
that have been longer in Spack seems pretty stable
• And the API is also much more readable than the API for EasyBlocks

• The criticism that when you’re building something with Spack, it is basically
an untested configuration is only partly true.
• Spack has quality control also, though of course they cannot test every

combination, but…

• … very often it just works, and when it does there is no way EasyBuild will beat it.

• Given the variations in Linux and underlying hardware requiring different
compiler optimisation options, the EasyBuild recipe may also not be tested.

Stop bashing spack! (2)

• “If you want to add another package to an environment, the concretizer may
come up with a very different solution, forcing you into reinstalling a lot”.
• May be true, but…

• … as far as I know it tries to take into account what is installed already.

• And in most cases EasyBuild would be unable to come up with a solution at all,
or at least also require installations in different toolchains that cannot be loaded
together.

• So from a user’s perspective Spack is then the better tool to create an
environment as they at least have something…

• A flexible tool whose developers don’t feel the need to test everything may
be better prepared for the “Cambrian explosion” phase we’re in

• Bashing the competitor can make you blind for your own shortcomings

Meet in the middle?

• Spack and EasyBuild on opposite ends of the spectrum?
• Spack the very flexible tool for individual (but untested, at least that is what

the EasyBuild community sometimes claims) configurations

• EasyBuild with fully fixed but well tested configurations

• And maybe we really need something in the middle?
• I agree and I often think about how to make EasyBuild a bit more flexible

• And have some awkward ways to do that on LUMI at the moment

• But actually Spack is taking that middle already with its environments
features,

• while sometimes I have the feeling that EasyBuild is moving even more to the
extreme

EESSI: An opportunity and a threat

• Opportunity: Extra personpower for EasyBuild development also

• Threats:
• Even more a focus on a single big software stack and features to enable that

• Even less emphasis on making EasyBuild a flexible tool

• Support hell for systems that use EESSI is a threat to the EESSI project but
may turn out to be a threat to the EasyBuild project also if EasyBuild
becomes too dependent on EESSI for success

• If a user at a site that uses EESSI notes a problem with an installation,
who will they turn to?

• If a solution requires interaction between the people who manage the
hardware and the people who manage the software installation, how will
this work?

EESSI: An opportunity and a threat

• Some thoughts
• Finding a user-friendly way to build on top of EESSI will be crucial!

• Other distribution models are also crucial

• Not every site ready to set up a cache (though the CSCS setup for
LHC/Atlas could be inspiring)

• Extra daemons are not always an option

• But could be solved by running in a container, at the cost of scalability?

• Putting stuff in /opt is also not always an option

• Could also be build in the container instead

• A native build with or without the compatibility layer may be a better solution
for a system as LUMI.

EuroHPC: An opportunity and a threat

• Observations:
• Plenty of money for machines but very little for support close to the machine

• Seems to favour strong communities that do development and support near the
user rather than near the supercomputer

• Isn’t this a better fit for the Spack model?

Conclusions

• EasyBuild on LUMI is an a-typical EasyBuild installation
• EasyBuild does not control the whole environment from the compilers onwards

• Not the standard EasyBuild compilers

• Works, but probably with more pain than needed

• Continued investments in EasyBuild on LUMI
• But we are not blind for other options, as …

• … particularly Spack does a good job on LUMI for some users…

• Users needed some time to adapt to the personal environment idea but I
think many now see the benefits

Conclusions (2)

• Things for improvements
• Toolchain issues: SYSTEM, C/CXX issues, but others are very Cray-specific

• Could argue about AMD GPU support also of course

• Documentation through modules issues

• Easyblocks

• Module hell and metadata server load

• Where is LLVM? Where is MPICH?

• EasyBuild support is currently best on Mellanox/NVIDIA hardware…

• EasyBuild community may be a bit guilty of navel-gazing or taking an
extreme position

• Keep your eyes open for upcoming threats!

