
LLNL-PRES-837654
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC

Spack Update

Todd Gamblin
Livermore Computing

Lawrence Livermore National Laboratory
Easybuild User Meeting 2023
April 25, 2023

2
LLNL-PRES-837654

github.com/spack/spack

• Spack automates the build and installation of scientific software
• Packages are parameterized; users can easily tune for host environment

• Ease of use of mainstream tools, with flexibility needed for HPC tuning

• Major victories:
• ARES porting time on a new platform was reduced from 2 weeks to 3 hours
• Deployment time for 1,300-package stack on Summit supercomputer reduced from

2 weeks to a 12-hour overnight build
• Official deployment tool for ECP’s E4S stack

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

3
LLNL-PRES-837654

github.com/spack/spack

Spack sustains the HPC software ecosystem
with the help of its many contributors

Over 7,100 software packages
Over 1,100 contributors

Most package contributions are not from DOE
But they help sustain the DOE ecosystem!

Over 7,000 monthly active users
(per documentation site)

Monthly active users

4
LLNL-PRES-837654

github.com/spack/spack

Spack users over the years

What type of
user are you?

What country
are you in?

2020 2021 2022

USA USA USA

36%
ECP

37%
ECP

26%
ECP

5
LLNL-PRES-837654

github.com/spack/spack

▪ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

▪ Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

6
LLNL-PRES-837654

github.com/spack/spack

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

7
LLNL-PRES-837654

github.com/spack/spack

▪ spack.yaml describes project requirements

▪ spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

▪ Can also be used to maintain configuration together with
Spack packages.

— E.g., versioning your own local software stack with consistent
compilers/MPI implementations

— Allows developers and site support engineers to easily version
Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description
Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

8
LLNL-PRES-837654

github.com/spack/spack

Concretization is at the core of Spack!

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config spack.yamlyaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This problem is
NP-hard!

9
LLNL-PRES-837654

github.com/spack/spack

▪ Major new features:
1. Package requirements
2. Environment UI improvements
3. Packages with multiple build systems
4. Compiler/variant propagation
5. Enhanced git versions
6. Better Cray EX Support
7. Testing and CI improvements
8. Experimental binding link model

▪ This is the last Spack version that will
support Python 2!

— v0.20 will remove support
— Already removed in develop

Spack v0.19.0 was released at SC22 in November

https://github.com/spack/spack/releases/tag/v0.19.0

10
LLNL-PRES-837654

github.com/spack/spack

You can now write hard requirements in packages.yaml

▪ Package preferences have
always been soft preferences,
BUT

— Old concretizer was too naive to
do soft preferences

— they behaved more like hard
prefs

▪ Users have asked for hard prefs

▪ We introduced a new syntax for
require:

— Less YAML, more spec syntax
— Easier to remember
— Supports one_of, any_of

11
LLNL-PRES-837654

github.com/spack/spack

▪ Environments now default to concretizer:unify:true

▪ unify:false was previous default
— Really geared toward admins and deployers, who need to fine-tune envs anyway
— Default should reflect average user’s case

Improvements to Environments

12
LLNL-PRES-837654

github.com/spack/spack

▪ Two major changes to environment CLI:
— spack install will no longer add root specs
— spack uninstall will not remove root specs

▪ These commands will add/remove to the root specs:
— spack add
— spack remove

▪ There are options for the old install/uninstall behavior:
— spack install --add
— spack uninstall --remove

▪ Rationale:
— An environment are like a skeleton that can be versioned in a repo
— add/remove modify the skeleton
— install/uninstall determine what parts you want

We have tried to reduce the likelihood of unintentionally
modifying spack.yaml

13
LLNL-PRES-837654

github.com/spack/spack

▪ An increasing number of
packages in the ecosystem need
this

— Lots of switches to cmake/meson
— Many need a different build

system on Windows

▪ Package now has a variant that
selects a builder

— Now much easier to separate
code for different build systems

— Previous approach left multiple
inheritance issues up to packagers

Package recipes now support multiple build systems

14
LLNL-PRES-837654

github.com/spack/spack

▪ New flag semantics:
— package ++variant: enabled variant that WILL be propagated to dependencies
— package +variant: enabled variant that will NOT be propagated to dependencies
— package ~~variant: disabled variant that will be propagated to dependencies
— package ~variant: disabled variant that will NOT be propagated to dependencies
— package cflags==-g: cflags will be propagated to dependencies
— package cflags=-g: cflags will NOT be propagated to dependencies

▪ Previously:
— Compiler flags propagated (were inherited by dependencies)

• but variants were not
— Now there’s a choice, and the syntax is the same for variants and flags

▪ One breaking change:
— cflags=-g would have propagated before
— You will have to use cflags==-g to get the same effect

New feature: Variant and compiler flag propagation

a

cb

d

+v

a

cb

d

++v

+v +v

+v

15
LLNL-PRES-837654

github.com/spack/spack

▪ We introduced commit versions in 0.18

▪ Now you can do branches and tags with the git. prefix:

▪ You can also force Spack to interpret the commit as a concrete version:

We have improved git versioning in Spack

16
LLNL-PRES-837654

github.com/spack/spack

▪ HPE/Cray has added several features that allow the Cray Programming
Environment (PE) to be used in a module-less way:

— Standalone Cray compiler drivers (craycc, crayCC, crayftn)
— Cray now includes MPI wrappers with cray-mpich (mpicc, mpic++, mpifc, etc.)

▪ Cray EX machines can be either SuSE or RHEL
— Need to model the linux distribution used properly

▪ Spack now treats Cray as just another Linux
— Cray PE packages are a mixin
— Can be detected with:

spack external read-cray-manifest

▪ Modules are no longer be required to build with PE externals!
— We encourage NOT using modules to avoid surprises with PE updates

We are now treating Cray EX like Linux

17
LLNL-PRES-837654

github.com/spack/spack

▪ You can now pre-bind absolute paths to
dependency libraries

— This is like RPATH, but even HIGHER
precedence

▪ Spack has always added RPATHs or
RUNPATHs to installations

— Can require searching a lot of installation
paths

▪ Pre-binding avoids path searches
— We resolve libraries in advance
— ld.so only needs to open the library to use it

▪ Can greatly improve parallel startup time
on many nodes

We have a new, experimental binding link model

Enable this with config:shared_linking:bind:true

18
LLNL-PRES-837654

github.com/spack/spack

▪ drop() directive for inherited packages
— Drop versions, variants, patches, etc. from parent
— Allows subclasses to track upstream more easily

▪ Virtual / used variant information on graph edges

▪ --reuse-deps: reuse only dependencies in
envs; roots are always fresh

▪ More regular/consistent/faster version
comparison logic

— @=4.5 to match exactly version 4.5
— @4.5 matches 4.5.<anything>

▪ Improvements to spack test
— pytest-like test_foo, test_bar, test_baz

methods in packages
— Plain python assert statements in methods

▪ Abstract hash references
— Make /abc234baf a lazy reference instead of an

immediate lookup
— Allows use of hashes in more places

▪ Concrete environment inclusion
— include_concrete /path/to/env
— Allow building on past environments without

reconcretizing

▪ libc compatibility model
— Replace OS field of specs with libc version
— Libc compatibility rules in solver
— First step towards a proper libc node

▪ require:when conditions in config
— Will make YAML config nearly as powerful as

package.py

Major features for Spack v0.20 (in progress, ISC timeframe)

19
LLNL-PRES-837654

github.com/spack/spack

▪ Improvements to error messages
— Explain concretization errors
— Track chains of constraints and report causes

▪ Separate concretization of build dependencies
— Allow different nodes to have different versions of build dependencies

▪ Compiler dependencies
— Model libstdc++ in the graph
— Enforce compatibility

▪ Spliced installation for binaries
— Allow system libraries (like MPI) to be spliced and RPATH’d into a binary package
— Build in build farm w/mpich, deploy on any compatible mpich-based MPI
— Build in build farm w/openmpi, deploy on compatible openmpi-based clusters

▪ Named installation trees
— Old PR, allows Spack to have a “facility” mode with a built-in upstream
— Users install to home directly by default but reuse from upstream install tree

Major features for Spack v0.21 (SC23 timeframe)

We want to reduce downstream work Facilities
Spack develop branch
• Bleeding edge: 400-600 changes/month
• Latest features and package versions

Spack release branches
• Stable spack
• Stable package versions
• Bugfixes backported

Applications
• Consume software from any of

these channels, via Spack
• Use bleeding edge or stable

Software Integration at HPC Facilities
• Local builds and testing
• Local configuration
• Local filesystem installation
• Local module scheme

E4S release branches
• Facility testing
• Curated public build caches (manually created)

External
Contributors
on GitHub

We want to move last-mile effort upstream
and eventually deploy from binaries

21
LLNL-PRES-837654

github.com/spack/spack

1. Sustainable: Don’t change maintainer workflow!
— Limited number of maintainers working mostly in GitHub PRs
— Most not actively monitoring the develop branch
— Most don’t want to babysit builds
— Don’t want extra work to cut a binary release

2. Rolling: Releases for common branches:
— develop (most users): continuously built cache
— releases/*: basically just the develop stack frozen at release time

3. Scalable:
— eventually support all 6,900+ packages

4. Source-buildable: Ensure that source builds still work in many environments
— Users still build from source frequently
— Don’t assume everyone will be using binaries

5. Secure:
— Ensure that binaries are just as trustworthy as sources

We set out to make a binary distribution with several goals

22
LLNL-PRES-837654

github.com/spack/spack

Spack relies on cloud CI to ensure that builds continue working

spack ci

Spack Contributions
on GitHub
(over 1,000 contributors)

spack.yaml
configurations

(E4S, SDKs, AWS,
others)

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch

x86_64 and aarch64
pipelines in AWS

ppc64le, GPU
pipelines at
U. Oregon

Pipelines at LLNL
(Cray PE soon)

Do users really need to build from source?

23
LLNL-PRES-837654

github.com/spack/spack

CloudFrontS3

(EKS)

Spack CI Architecture

Monitoring
HA GitLab

spackbot
Bare metal runners
on “Frank” cluster

MI200

Power9

NVIDIA

a64fx etc.

etc.

etc.

Runner
PoolsRunner

PoolsRunner
PoolsRunner

Pools

Spack
on GitHub

Real HPC test
environments?

24
LLNL-PRES-837654

github.com/spack/spack

https://binaries.spack.io

Public, signed binaries in CDN

We use separate build environments for PRs and develop to ensure trust

• Moves bulk of binary maintenance upstream, onto PRs
– Production binaries never reuse binaries from untrusted environment

develop releases/v0.18 …

Internal per-PR build caches

Untrusted S3 buckets

github/pr-28469 …

Contributors submit
package changes
• Iterate on builds in PR
• Caches prevent

unnecessary rebuilds

Maintainers review PRs
• Verify PR build succeeded
• Review package code
• Merge to develop

Rebuild and Sign
• Published binaries built

ONLY from approved
code

• Protected signing runners
• Ephemeral keys

github/pr-28468

25
LLNL-PRES-837654

github.com/spack/spack

We announced our public binary cache last June.
We’re maintaining ~4,600 builds in CI!

latest v0.18.x release binaries
spack mirror add v018 https://binaries.spack.io/releases/v0.18

rolling release: bleeding edge binaries
spack mirror add develop https://binaries.spack.io/develop

So we’re done, right? What could go wrong?

✅ Easy (mostly) for contributors!

✅ Easy for users!

26
LLNL-PRES-837654

github.com/spack/spack

▪ We don’t require PRs to be up to date
— Too slow – we’d never get any PRs in

▪ GitHub normally merges with develop HEAD
— Can cause a lot of redundant PR builds
— Need think hard about what merge commit gets

sent to GitLab

▪ PR 1 can merge with B and get cache reuse

▪ PR 2 is ahead of B
— Merging with C or D means builds are redundant

w/D

▪ Launching many like PRs 2 can be very wasteful
— So we wait for D

There is a delicate balance between redundant builds
and quick PR turnaround

C

B

A

D

Last develop build

develop build
in progress

PR 1
Can merge
w/last build

PR 2
Unbuilt base
means
redundant
builds

27
LLNL-PRES-837654

github.com/spack/spack

Builds have been noticeably more reliable since we added CI 🎉

but…

1. Most Spack committers are adding small changes (e.g., new version/option)
— Small changes can trigger hundreds of builds!

2. PR tests may not reflect software configuration when all PRs are integrated

3. Likelihood of an unrelated system error in any one build is very high. 💥💣💥

4. GitLab can’t always differentiate a real build failure vs. a system failure 🐞
— Using k8s runners makes this worse
— Hard to know when to auto-restart

5. Committers have to babysit pipelines and restart failed jobs

Long PR wait times can frustrate contributors

Contributors have become more frustrated as stacks have grown

28
LLNL-PRES-837654

github.com/spack/spack

We have used monitoring to improve understanding of CI workload

▪ There is room for improvement with ParaView builds
— Not sure why it’s significantly higher than other packages

▪ Can trace load on the system to specific PRs/branches:

29
LLNL-PRES-837654

github.com/spack/spack

Karpenter allows us to manage many instance types

▪ We request instances with archspec tags

▪ Karpenter maps archspec names to instance types
— Not automatic currently, but makes things way easier

▪ We use multiple instance types to get greater spot capacity

30
LLNL-PRES-837654

github.com/spack/spack

In February, our monitoring revealed a significant problem with
pod scheduling

▪ Karpenter tool was killing
build jobs to consolidate
nodes

— Led to many pipeline
failures

▪ Designed for stateless
services, NOT build jobs

— Build is more like batch

31
LLNL-PRES-837654

github.com/spack/spack

We were able to trace most of our reliability issues to Karpenter
(container scheduling) configuration

▪ Tweaked a few settings:
— Disabled consolidation for

build jobs
— Added affinity preferences

to pack pods tighter

▪ Went from ~12% failure
rate to 2% failures

— Most remaining errors are
normal development
issues

— Working to differentiate
from system issues.

32
LLNL-PRES-837654

github.com/spack/spack

Some takeaways

• Spack community continues to grow
– European user and contributor base appears to be increasing

• We are moving fast on feature and package development
– Many features done per release
– Environments, workflows, testing, new package and concretization features
– Lots of work on core to make package installation versatile and easy

• CI is helping us keep the software stack stable
– Contributors can easily rebuild all dependents of a single package
– Now even easier to add a new stack to CI

• Better monitoring is helping us keep CI stable!
– Still learning how to run a reliable, distributed cloud service
– Concerted effort to improve dashboards and reduce errors has helped a lot

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

