
AOMP: OpenMP Target

Offloading for AMD GPUs

Jan-Patrick Lehr

Member of Technical Staff

Software Development Engineer

2 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has

risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct

or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content

hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE

CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY

APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR

ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY

INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, EPYC, Instinct and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered

trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks

of their respective companies.

3 |

[Public]

Agenda 1. A high-level overview of the ROCm™ software stack

2. AOMP and its (software) dependencies

3. AOMP compilation/linking process

4. AOMP architecture

5. Example OpenMP target offload

ROCm™ Software Stack

5 |

[Public]

6 |

[Public]

ROCm™ Software Stack (Meta Packages)

7 |

[Public]

ROCm™ Associated Packages

8 |

[Public]

Software System Terminology

AMD ROCm™ is an open software
platform for GPU compute consisting
of compilers, libraries, tools, etc.

https://www.amd.com/en/graphics/servers-solutions-
rocm

AOMP is an open-source Clang/LLVM-
based compiler with added support for
the OpenMP® API on Radeon™ GPUs
that builds on top of ROCm™

Releases are more frequent than ROCm™

(https://github.com/ROCm-Developer-Tools/aomp)

Since AOMP is Clang/LLVM based, the
high-level software architecture of
OpenMP target offload support is
identical

AOMP is both ahead and behind LLVM mainline
trunk (upstream)

ROCm™ AOMP LLVM

https://www.amd.com/en/graphics/servers-solutions-rocm
https://www.amd.com/en/graphics/servers-solutions-rocm

9 |

[Public]

Jargon

• Upstream: LLVM mainline trunk (i.e., the code in their GitHub repository)

• Host: The host machine (e.g., AMD Epyc processor-based server)

• (Target) Device: An attached accelerator (e.g., AMD Instinct MI200)

• (Host) Runtime: The OpenMP runtime implementation for the host

• Libomptarget: The OpenMP target offload runtime (running on the host)

• (Target or Device) Runtime: The OpenMP runtime implementation for the target device

• Plugin: The device-specific target-runtime plugin

• Kernel: A target region executable on the device

• Queue: An HSA (hardware) queue

• Signal: An HSA signal

AOMP

Open Source OpenMP Compiler

for AMD GPUs

11 |

[Public]

AOMP

• Open Source OpenMP compiler for AMD GPUs

• Available from https://github.com/ROCm-Developer-Tools/aomp

• Based on Clang/LLVM

• AOMP tracks LLVM upstream closely, typically only a few hours behind

• Includes additional optimizations (e.g., faster reductions)

• Includes additional features (e.g., OMPT support)

• Fixes are commonly submitted to upstream LLVM

• Fortran support

• Currently via classic Flang

• Active development on LLVM Flang

Github

https://github.com/ROCm-Developer-Tools/aomp

12 |

[Public]

AOMP

Getting, building and installing AOMP (and its dependencies)

• AOMP is “standalone” → requires only the kernel module (dkms) and libdrm

• AOMP is isolated from ROCm™ installations by installing in /usr/lib/aomp and uses RPATH on runtime libs

• AOMP includes builds of related ROCm™ components

• Packages are provided on Github for

• CentOS 7, 8, and 9

• SLES 15 SP 4

• Ubuntu 20.04 and 22.04

13 |

[Public]

Components from ROCm™

• AOMP includes various ROCm™ components

• The components are built from source

• Versions and repositories are encoded in manifest

file in the Github repository

• Build scripts for individual components build the

dependencies

• All components are installed in AOMP install

directory

ROCm™ Components

• rocm-compiler-support

• rocm-device-libs

• ROCprofiler

• ROCtracer

• ROCdbgapi

• ROCgdb

• Hipamd

• Hip

• ROCclr

• ROCm-OpenCL-runtime

• ROCminfo

• ROCm-cmake

• ROCR-Runtime

• ROCT-Thunk-Interface

• hipfort

14 |

[Public]

AOMP Manifest File

Used to tag dependencies for

each AOMP release

• Used by AOMP team for

development on most recent

development branches

• Specific versions for each

public release

AOMP

Compilation Process

Execution

Device Plugin Architecture

16 |

[Public]

AOMP Compilation Process

• Compilation requires code generation for host and for device

• Invoke compiler twice for the different target triples

• Object code for both targets is output into a single fat binary

17 |

[Public]

AOMP Linking Process

• Linking requires generating one host image and an embedded device executable

• Start with fat binary and unbundle into device and host objects again

• Create a correctly linked host executable with embedded device ELF objects for offload kernels

• Moving towards a simplified toolchain, closer to today’s upstream LLVM

18 |

[Public]

Load

Load

High-level Runtime Process Overview

Host Device

Load O
p

e
n

M
P

19 |

[Public]

AOMP Plugin Implementation using HSA

• HSA is the Heterogenous System Architecture, managed by the HSA foundation

• Provides standardized interface to interact with heterogenous components

• AMD provides vendor-specific extensions to the HSA standard as part of the ROCm™ stack

• AMDGPU Plugin builds on top of HSA making use of

• HSA locked or pinned memory (i.e., non-migratable)

• HSA Signals and Queues for (asynchronous) operation dispatch

• HSA extensions to obtain profiling information for HSA signals

• HSA is low level!

• hsa_signal_create(…)

• hsa_signal_wait_relaxed(…)

• hsa_queue_load_write_index_acquire(…)

• hsa_queue_store_write_index_relaxed(…) GPU

- Hardware Scheduler

Driver

Example of OpenMP Target Offload

21 |

[Public]

OpenMP Target Offload Code Example

int main(int argc, char **argv) {

int vals[1024] = {0};

for(int i = 0; i < 1024; ++i) {

vals[i] = 1;

}

for(const auto vi : vals) {

std::cout << vi << ‘\n’;

}

return 0;

}

#pragma omp target teams distribute parallel for map(vals)

22 |

[Public]

OpenMP Target Offload Code Example

int main(int argc, char **argv) {

int vals[1024] = {0};

for(int i = 0; i < 1024; ++i) {

vals[i] = 1;

}

for(const auto vi : vals) {

std::cout << vi << ‘\n’;

}

return 0;

}

#pragma omp target teams distribute parallel for map(tofrom: vals)

23 |

[Public]

OpenMP Target Offload Code Example

int main(int argc, char **argv) {

int vals[1024] = {0};

for(int i = 0; i < 1024; ++i) {

vals[i] = 1;

}

for(const auto vi : vals) {

std::cout << vi << ‘\n’;

}

return 0;

}

#pragma omp target teams distribute parallel for map(vals)

24 |

[Public]

Libomptarget Plugin Entry Points

int main(int argc, char **argv) {

int vals[1024] = {0};

#pragma omp target teams distribute parallel for map(vals)

for(int i = 0; i < 1024; ++i) {

vals[i] = 1;

}

for(const auto vi : vals) {

std::cout << vi << ‘\n’;

}

return 0;

}

25 |

[Public]

AOMP Summary

• Open-source compiler for OpenMP target offload based on Clang/LLVM

• Support for C/C++/Fortran

• Features are merged into ROCm™ releases

• Additional optimizations compared to upstream Clang/LLVM

• Provides standalone build and installation from source using provided scripts

• Requires the kernel driver to be installed on the system

• Pulls-in the required ROCm™ dependencies

	Default Section
	Slide 1: AOMP: OpenMP Target Offloading for AMD GPUs
	Slide 2: Disclaimer
	Slide 3: Agenda
	Slide 4: ROCm™ Software Stack
	Slide 5
	Slide 6: ROCm™ Software Stack (Meta Packages)
	Slide 7: ROCm™ Associated Packages
	Slide 8: Software System Terminology
	Slide 9: Jargon
	Slide 10: AOMP
	Slide 11: AOMP
	Slide 12: AOMP
	Slide 13: Components from ROCm™
	Slide 14: AOMP Manifest File
	Slide 15: AOMP
	Slide 16: AOMP Compilation Process
	Slide 17: AOMP Linking Process
	Slide 18: High-level Runtime Process Overview
	Slide 19: AOMP Plugin Implementation using HSA
	Slide 20: Example of OpenMP Target Offload
	Slide 21: OpenMP Target Offload Code Example
	Slide 22: OpenMP Target Offload Code Example
	Slide 23: OpenMP Target Offload Code Example
	Slide 24: Libomptarget Plugin Entry Points
	Slide 25: AOMP Summary
	Slide 26

