
Digital Research Alliance of Canada site talk

Lessons learned, new developments

Compute Canada is now The Alliance (National coordinating office, non-profit funded by Government of Canada).
The Federation = The Alliance + 38 partner universities + 5 regional organizations

Bart Oldeman
McGill University, Calcul Québec, Digital Research Alliance of Canada

Research Support National Team Software Installation Coordinator
(with Maxime Boissonneault, Charles Coulombe, Doug Roberts (RSNT), Ryan Taylor (CVMFS))

The people

2

All research
disciplines
supported

Free access for any
researcher at a
Canadian institution

● 5 regional consortia
● 38 member institutions
● ～250 technical staff
● ～18,000 user accounts
● 6 clusters, 4 clouds, 300k cores, 2k

GPUs, 100s PB storage

WestDRI: BC and Prairies DRI
(was Westgrid)

5 major national systems
300K cores, 30 PF
90 PB disk, 180 PB tape

System Type Network Production

Arbutus Cloud 10 GbE 2016 H2

Cedar General OPA 2017 H1

Graham General EDR IB 2017 H1

Niagara Large MPI EDR IB 2018 H1

Béluga General EDR IB 2019 H1

Narval General HDR IB 2021 H2

The hardware

Starting in 2017, new bigger national systems
replaced many smaller local clusters, with common
software stack, scheduler (Slurm), and so on,
administered by national teams.
Many sites have no physical cluster but still support.

Guiding principle
Users should be presented with an interface that is as consistent and as easy to
use as possible across all sites. It should also offer optimal performance.
All sites
1. Need a distribution mechanism

a. CVMFS
Consistency
2. Independent of the OS (Ubuntu, CentOS, Fedora, etc.)

a. Compatibility layer: was Nix, now Gentoo Prefix
3. Automated installation (humans are not so consistent)

a. EasyBuild
Easy to use
4. Needs a module interface that scale well

a. Lmod with a hierarchical structure

Background
Most HPC clusters use enterprise Linux distributions for good
reasons (vendor support for network, parallel filesystems, etc)

CentOS/RHEL 7
Linux kernel 3.10, GCC 4.8.5, Glibc 2.17, Python 2.7.5 (+ backports of course)
CentOS/RHEL/Rocky/... 8
Linux kernel 4.18, GCC 8.4, Glibc 2.28, Python 3.9.2 (+ backports of course)
CentOS/RHEL/Rocky/... 9
Linux kernel 5.14, GCC 11.2.1, Glibc 2.34, Python 3.9.10
compare:
Fedora 38
Linux kernel 6.2.9, GCC 13.0.1, Glibc 2.37, Python 3.11.2

Background
But users on those clusters want shiny new things and install
them as if it were a local Linux computer (following documentation):
$ sudo apt-get install python3.9-dev
We trust you have received the usual lecture from the local
System Administrator. It usually boils down to these three
things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for jsmith:
sudo: apt-get: command not found
$ sudo yum install python39-devel
[sudo] password for jsmith:
Sorry, try again.
[sudo] password for jsmith:
Sorry, user jsmith is not allowed to execute ...

Solution: modules
Create a “modulefile” named “python/2.7.9” somewhere
in $MODULEPATH
#%Module1.0###########################
proc ModulesHelp { } {
 puts stderr "\tAdds Python 2.7.9 to your environment"
}
module-whatis "Adds Python 2.7 to your environment"
set root /software/CentOS-6/tools/python-2.7.9
prepend-path MANPATH $root/share/man
prepend-path PATH $root/bin
prepend-path LD_LIBRARY_PATH $root/lib
prepend-path CPATH $root/include

Users do “module load python/2.7.9”, which modifies their environment. “module
unload python” restores it then.

Solution: modules
How were modulefiles created:
by hand of course, same as
how the software was
installed.
How to not become invaluable:
https://easybuilders.github.io/easybuild/

http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

https://easybuilders.github.io/easybuild/
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html

Software: design overview

Compatibility: Gentoo Prefix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.
module gentoo/2020 => $EPREFIX=
/cvmfs/soft.computecanada.ca/gentoo/2020, $EBROOTGENTOO=$EPREFIX/usr

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all dependencies
of OpenMPI). In Gentoo layer, but can be overridden using PATH & LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command): always local.
Some legally restricted software too (VASP)

Easybuild layer: modules for Intel, NVHPC, OpenMPI, CUDA, MKL, high-level applications.
Multiple architectures (sse3, avx, avx2, avx512)
/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/2020

CVMFS content delivery

(caching proxies)

Compatibility layer: Nix Gentoo Prefix

● Package, dependency & environment management system
● Builds using bash-like “ebuilds”.
● Used to provide dependencies for scientific applications, themselves of little

scientific interest
○ Glibc, coreutils, awk, grep, Bash, Bison, Flex, GNU Make, ncurses,

readline, libxml2, zlib, bzip2, XZ, Autotools, binutils, OpenSSL, libpng,
Emacs, vim, X11, texlive, etc., etc.

○ Newer versions of those than found in enterprise distributions, e.g. Bash
5.0, Git 2.31.0, Vim 8.2, Emacs 26.2

● Abstraction layer between the OS and the scientific software stack, using
gentoo/2020 module

● Carries all* the dependencies of scientific software stack
* Exceptions: drivers, kernel modules, etc.

X

Tools used : EasyBuild

● Automates installation of (mostly) scientifically oriented software and
generation of modulefiles.

● Lua based module system
● Makes it easy to setup a software module hierarchy

○ e.g. modules that depend on MPI implementation X are only visible if you
first “module load X”.

● https://lmod.readthedocs.io/en/latest/

Tools used : Lmod

X

https://lmod.readthedocs.io/en/latest/

Gentoo/Nix and EasyBuild, conceptually

● Builds are performed through “recipes”
● Recipes are stored on Git. Compute Canada has its own fork of the repos :

○ Gentoo Overlay
○ Easybuild:

■ framework (high level Python scripts)
■ easyblocks

● is it configure; make; make install, cmake, custom? (Python
scripts)

■ easyconfigs
● what are the configure parameters? (configuration files)

● Will “unfork” in near future, using custom repositories for our own
easyconfigs/easyblocks/toolchains.

https://github.com/computecanada/gentoo-overlay
https://github.com/ComputeCanada/easybuild-framework
https://github.com/ComputeCanada/easybuild-easyblocks
https://github.com/ComputeCanada/easybuild-easyconfigs

Installing software, step by step
1. Figure out if it should be in Gentoo or EasyBuild

○ Is the software performance critical or depends on MPI?
■ Yes => EasyBuild
■ Multiple versions needed via modules ?

● Yes => EasyBuild
● No => Gentoo

2. Install on build-node.computecanada.ca with the appropriate package manager,
Portage (emerge) or eb: plain eb installs in home dir, then with sudo -iu ebuser

3. Test on build-node.computecanada.ca
4. Deploy on CVMFS dev repository
5. Test on cvmfs-client-dev.computecanada.ca or with proot
6. Deploy on CVMFS production repository
7. Final testing on the production cluster

Why Gentoo instead of Nix?
We used a single read/only Nix environment:
.../nix/var/nix/profiles/16.09 ->

.../nix/var/nix/profiles/16.09-523-link ->

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment/bin/ls ->

.../nix/store/cn222k5axppndcfbqlckj57939d9h0h9-coreutils-8.25/bin/ls

We wrapped the linker (ld) so only $NIXUSER_PROFILE/lib was used.
Nix components can be upgraded, which changes the store hashes, and allows garbage collect /
selective copying.

Sometimes store hashes would “leak” into EasyBuild-compiled software anyway, via
cmake, qmake or Python virtualenv, and garbage collect was destructive.
● Nix is better used as a top layer with writable store directories
● But HPC users are familiar with environment modules, not Nix’ tools.

Gentoo Prefix : no symlinks, no store leak, minimal solution

X

What are wheels?
Wheels are the new standard of Python distribution and are intended to replace
eggs. Support is offered in pip >= 1.4 and setuptools >= 0.8.

Advantages of wheels

1. Faster installation for pure Python and native C extension packages.
2. Avoids arbitrary code execution for installation. (Avoids setup.py)
3. Installation of a C extension does not require a compiler on Linux, Windows or macOS.
4. Allows better caching for testing and continuous integration.
5. Creates .pyc files as part of installation to ensure they match the Python interpreter used.
6. More consistent installs across platforms and machines.

7. You can compile your own wheels, linking against your compiled
libraries

Python wheels

https://pypi.org/project/wheel
https://www.python.org/dev/peps/pep-0427

Our supported wheels

$ find /cvmfs/soft.computecanada.ca/custom/python/wheelhouse -name '*.whl' |wc
11299
$ avail_wheels tensorflow
name version python arch
---------- --------- -------- -------
tensorflow 2.11.0 cp39 generic
tensorflow 2.11.0 cp38 generic
tensorflow 2.11.0 cp310 generic

● https://docs.alliancecan.ca/wiki/Available_wheels

17

https://docs.alliancecan.ca/wiki/Available_wheels

“Compute Canada” Software Stack

18

AVX512

Python 3.8

Python 3.7

StdEnv/2020

~1000 scientific
applications

10000+ permutations of
version/CPU/toolchain

Optimized for

● 4 major generations of CPUs
(from early 2000s to recent
CPUs in 2020)

● 4 major generations of
NVidia GPUs

● InfiniBand, OmniPath,
Ethernet

15000+ python wheels

https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Available_software
https://docs.alliancecan.ca/wiki/Available_Python_wheels

Current environment: StdEnv/2020

● Gentoo Prefix from May 2020
● Uses iomkl/2020a toolchain and subtoolchains for most software

○ GCCcore 9.3.0 (majority), Intel 2020.1, Open MPI 4.0.3
○ https://github.com/ComputeCanada/software-stack/blob/main/doc/e

asybuild.md#toolchains
○ modified to iofbf/2020a with Narval using AMD: Intel clusters use

MKL backend, AMD BLIS by default
https://github.com/flame/blis/issues/548

○ Newer toolchains are available but more custom, not in default
module view at MPI level (eg. module load gcc/11.3 openmpi/4.1.3)

● Made the default in April 2021, older stack still available using
module load StdEnv/2016.4 or 2018.3.

19

https://github.com/ComputeCanada/software-stack/blob/main/doc/easybuild.md#toolchains
https://github.com/ComputeCanada/software-stack/blob/main/doc/easybuild.md#toolchains
https://github.com/flame/blis/issues/548

Future environment: StdEnv/2023

● Gentoo Prefix from ~May 2023
● May use ~foss/2023a toolchain and subtoolchains for most software

○ GCCcore 12.3.0, Open MPI 4.1.5
○ Though GCC 13 has better support for AMD GPUs (Radeon GCN,

Instinct MI200), it may be too premature.
○ Open MPI 5 ?

● Should be default in April 2024
● Considering:

○ Moving some things between compat and software layer:
build tools (CMake, Meson, Ninja, etc.), GCC (?)

○ Use ideas from EESSI, e.g. variant symlink for CUDA driver libs.
○ RPATH: https://stoppels.ch/2022/08/04/stop-searching-for-shared-libraries.html

20

https://stoppels.ch/2022/08/04/stop-searching-for-shared-libraries.html

Promising RPATH alternative
● Harmen Stoppels:

https://stoppels.ch/2022/08/04/stop-searching-for-shared-libraries.html
● Idea: put absolute path in soname in library, regular linking inherits it in needed

entry.
$ gcc -shared -o libf.so -x c -Wl,-soname,$PWD/libf.so - <<EOF
#include <stdio.h>
void f() { puts("hello world"); }
EOF

$ gcc -o main -x c - -L. -lf <<EOF
void f();
int main() { f(); }
EOF

$./main
hello world

$ patchelf --print-needed main
/tmp/hello/libf.so
libc.so.6

● Removes need for RPATH, wrapper, just adjust soname in shared libraries.
● https://github.com/spack/spack/pull/31948

https://stoppels.ch/2022/08/04/stop-searching-for-shared-libraries.html
https://github.com/spack/spack/pull/31948

War story:
https://sft.its.cern.ch/jira/browse/CVM-2001
May 2021: In-place update of glibc caused widespread corruption.
● Started as fairly innocent looking change to enable memusage and memusagestat

for memory profiling.
● After pushing $EPREFIX/lib64/libc-2.30.so into cvmfs, processes already

started randomly crashing (they all mmap this file). Newly started programs on clean
nodes were fine.

● Reason: “cache poisoning”
● sha256sum would give different results every time you ran it.
● Similar things happen when you “cp” a shared library, but not if you unlink it first and

then place a new one on a local file system (two different inodes)
● In-place updates work fine if you use symbolic links (files or directories) instead.
● Fixed in CVMFS 2.10.0 (https://github.com/cvmfs/cvmfs/pull/3043)

https://sft.its.cern.ch/jira/browse/CVM-2001
https://github.com/cvmfs/cvmfs/pull/3043

Software challenges caused by custom prefix
Using /cvmfs/soft.computecanada.ca/gentoo/2020/usr instead of /usr
● Uses Gentoo Prefix custom loader (ELF interpreter in

$EPREFIX/lib/ld-linux-x86-64.so.2)
● Custom setrpaths.sh script patches (using patchelf --set-interpreter)

downloaded binaries so they can work with this prefix
● Some users set LD_LIBRARY_PATH to /usr/lib64, mostly by accident in old

.bashrc files, which breaks most tools
● Some commercial packages use wrapper scripts which needed to patched
● Anaconda & Julia

○ provide binaries that are not always compatible
○ we provide pip-installable Python wheels and actively discourage Anaconda

■ Anaconda users can even end up with custom, non-optimal, installations of
Open MPI or R.

● If all else fails, use module --force purge, or Singularity/Apptainer.

Challenge: host OS/compatibility layer boundary
● Various host OS daemons write to files under /var such as /var/run/utmp, but

compatibility layer utilities (last, w, who, etc.) read from $EPREFIX/var.
● But (for example) Gentoo Prefix’ $EPREFIX/usr/include/paths.h sets

_PATH_UTMP to $EPREFIX/var/run/utmp. who then reads from that file. Two
solutions:
○ strategic symlinks, e.g. $EPREFIX/var/run -> /var/run (CC)
○ change paths.h

● Rest works remarkably well:
○ libnss_ldap/sss libraries can be compiled from source, also read from locations

under /var (symlinks for libraries cause issues if host OS is newer than compat)
○ Whole Mate desktop can be compiled and works with VNC (including via

JupyterHub, and with VirtualGL)
○ Even some selinux support (for filesystem labels).

Other peculiarities
● We use central libstdc++ (+libgfortran etc) at runtime from compat layer, presently:

/cvmfs/soft.computecanada.ca/gentoo/2020/usr/lib/gcc/x86_64-pc-linux-gnu/11.3.0/libstdc++.so.6

○ Adding newer GCCcore installation via EasyBuild necessitates adding newer
GCC in Gentoo as well (multiple can be installed in parallel)

○ Advantages
■ we can collapse GCCcore EasyBuilds for different versions to “SYSTEM”

● foo-1.0-GCCcore-11.3.0.eb -> foo-1.0.eb in ebfiles_repo via hook.
● Large repository of compatible modules at Core level.

■ Python wheels compiled with g++11 compatible with compiled-with-g++9
○ Disadvantages

■ A little messy, not 100% compatible with upstream
○ May need to consider using GCCcore-system toolchain via Gentoo GCC to get

more consistency.

Opportunities, collaboration with EESSI

● Public part of the stack is available everywhere
○ https://docs.alliancecan.ca/wiki/Accessing_CVMFS
○ source /cvmfs/soft.computecanada.ca/config/profile/bash.sh
○ Proprietary packages, e.g. Intel compilers, MATLAB, in restricted

repositories
● Could share Compatibility Layer (Gentoo Prefix Ansible-based bootstrap)

with EESSI, just needs a different larger set + some USE flag configuration.

26

https://docs.alliancecan.ca/wiki/Accessing_CVMFS

