
Recent Advances in ReFrame

8th EasyBuild User Meeting

Vasileios Karakasis (NVIDIA) and Theofilos Manitaras (CSCS)

April 24, 2023

Summary

1. First part (Vasileios)
a. Community update
b. Overview of ReFrame 4.0 changes
c. Review of some of the less well known pre 4.0 features, that are quite useful

2. Second part (Theofilos)
a. Overview of the programmable configuration in ReFrame
b. Using programmable configuration for container-based testing
c. Using programmable configuration for user-environment-based testing

2

ReFrame

ReFrame is a powerful framework that enables system testing and performance testing
as code with unique HPC features.

● Composable tests written in Python allowing the creation of reusable test libraries
● Multi-dimensional test parameterisation
● Support for test fixtures
● Parallel execution of tests
● Programmable configuration
● Support for multiple HPC schedulers, modules systems, build systems and

container runtimes
● Integration with Elastic and Graylog for feeding directly performance data from tests
● CI integration through Gitlab child pipelines

38th EasyBuild User Meeting

ReFrame community

● Documentation: https://reframe-hpc.readthedocs.io
○ 300–400 unique readers monthly from all over the world

● Slack workspace (more than 230 members):
○ Join us through this link.

● Github
○ ReFrame HPC community group: https://github.com/reframe-hpc

■ Collection of public forks of site test repositories
○ 45 contributors since the beginning
○ Backlog: https://github.com/orgs/reframe-hpc/projects/1
○ Code: https://github.com/reframe-hpc/reframe

■ Give it a ⭐ !
● PyPI: https://pypi.org/project/ReFrame-HPC/

○ More than 8K downloads/month according to pepy.tech

48th EasyBuild User Meeting

New development workflow since 4.0

● We introduced a develop branch
○ New features go to this branch
○ The /latest docs point to this branch
○ This is the default Github branch

● The master branch remains as the release branch
○ All releases are made from master
○ Bug fixes, documentation updates, minor enhancements target this branch directly
○ Patch-level releases every one or two weeks and are merged into develop
○ develop will be merged into master just before the next minor or major release

● Pros
○ Quick release of bug fixes on top of stable releases
○ We can follow more accurately the semantic versioning scheme

● Cons
○ Periodical synch'ing of develop and master
○ Might sometimes be confusing which branch a PR should target

Check also the updated contribution guide: https://github.com/reframe-hpc/reframe/wiki/contributing-to-reframe

58th EasyBuild User Meeting

Changes in ReFrame 4 – Dropped features

All features deprecated in 3.x versions are dropped:

● @parameterized_test is replaced by the parameter builtin
● The test's name is now read-only
● The various test method decorators are only accessible through their builtin names

(e.g., @run_after instead of @rfm.run_after)
● --force-local, --strict and --ignore-check-conflicts options are

dropped
● The schedulers configuration section is replaced by a sched_options section

inside each partition definition.
○ NOTE: This is broken in 4.0 and fixed in 4.1

● Test's variables attribute is deprecated over the new env_vars.
 More here: https://reframe-hpc.readthedocs.io/en/stable/whats_new_40.html#dropped-features-and-deprecations

68th EasyBuild User Meeting

Changes in ReFrame 4 – New features

Configuration can be split in multiple files

● Scoping was already a feature through the
use of target_systems

● Now scopes or parts of the configuration
can be split in multiple files

● No need to maintain huge configuration
files and repeat the builtin config; the
configuration file contains only the
information it needs to!
○ In this example, no need to redefine the

generic system and builtin
environment; they are still valid

○ No need to redefine logging config or any
other section.

● -C option can now be chained

7

site_configuration = {
 'systems': [
 {
 'name': 'tresa',
 'descr': 'My Mac',
 'hostnames': ['tresa'],
 'modules_system': 'nomod',
 'partitions': [
 {
 'name': 'default',
 'scheduler': 'local',
 'launcher': 'local',
 'environs': ['gnu'],
 }
]
 }
],
 'environments': [
 {
 'name': 'clang',
 'cc': 'clang',
 'cxx': 'clang++',
 'ftn': '',
 'target_systems': ['tresa']
 },
]
}

8th EasyBuild User Meeting

Changes in ReFrame 4 – New features (cont'd)

● The filelog log handler for file-based performance logging has been
fundamentally revised
○ Default output is CSV so that it can be easily post-processed
○ A header line is printed in every file
○ If the logged fields change, a new log file is created with an updated header and the old is

backed up
● Custom parallel launchers can be directly defined in the configuration file

○ No need extending the framework!
○ … but DO extend it and submit a PR if others can benefit from it!

● New backends
○ Apptainer container platform
○ Scheduler backend for the Flux Framework

88th EasyBuild User Meeting

Changes in ReFrame 4 – New features (cont'd)

New test naming scheme

● Informational and human readable
● Tests can be selected by name, by hash or by variant using the -n option

○ -n '^osu_.*'
○ -n /03d6f48f
○ -n osu_allreduce_test@3

9

- osu_allreduce_test %mpi_tasks=16 /03d6f48f @generic:default+builtin
 ^build_osu_benchmarks ~generic:default+builtin 'osu_binaries /5cf701b0 @generic:default+builtin
 ^fetch_osu_benchmarks ~generic 'osu_benchmarks /9fc7952e @generic:default+builtin

Test or fixture name Test parameters Test hash Test case info

Fixture scope Fixture variable name
8th EasyBuild User Meeting

Changes in ReFrame 4 – New features (cont'd)

● New --dry-run option (since 4.1)
○ Generates all scripts that will be executed and validates as much of the test as possible
○ Tests can also check if in dry-run mode and adapt by calling is_dry_run().

● Support for custom formatting of JSON records sent to Elastic (since 4.1)
○ Set the callable json_formatter in the httpjson perflog handler
○ Useful to meet requirements of remote schemas and other constraints

● New --reruns and --duration options for stress testing (since 4.2)
○ Repeatedly run the same test session until a number of runs is reached or a timeout expires
○ Results and failure statistics will be reported from all runs
○ Use with care! 😁

■ reframe -n gpu_burn_check --distribute=all --duration=24h

108th EasyBuild User Meeting

Old but gold – System/Environment features

Extended syntax for valid_systems and
valid_prog_environs (since 3.11)

● Tests are no more bound to specific
system names and/or environment names

● The test can list the features or the
properties of a system and/or
environment that is valid or not valid for.

11

'partitions': [
 {
 'name': 'mypart',
 'environs': ['myenv', ...],
 'features': ['gpu', 'ib'],
 },
 ...
],
'environments': [
 {
 'name': 'myenv',
 'features': ['cuda', 'mpi'],
 'extras': {'mpi_kind': 'mpich'}
 },
 ...
]

Example config

AND features
valid_systems = ['+gpu +ib']
OR features
valid_systems = ['+gpu', '+ib']
NOT features
valid_prog_environs = ['-cuda']
Select extras
valid_prog_environs = ['%mpi_kind=mpich']

Test syntax

More in Theo's part

Old but gold – Command-line options

● The -S or --setvar option (since 3.8 with subsequent refinements)
○ Sets test variables from the command-line
○ Allows also to set variables in nested fixtures
○ Very useful for running test interactively and for experimentation

● Clone and distribute tests all over the cluster (since 3.12)
○ --repeat=N: repeat selected tests N times
○ --distribute[=STATE]: run the selected tests on every node in STATE

■ Can be combined with the -J option as well:
■ reframe -J reservation=foo --distribute=all --repeat=10 -n

my_stress_test -r
● Generate Gitlab CI child pipelines running the selected tests:

○ --ci-generate (since 3.4.1)
○ Control the CI pipeline from within the test using ci_extras (since 4.2)

E.g.: ci_extras = {'gitlab': {'only': {'refs': ['merge_requests']}}}

128th EasyBuild User Meeting

Old but gold – Execution modes

● Named collections of command line
options defined in the configuration file
and selectable with the --mode command
line option (since 2.5):
○ Treat reframe execution as a black box
○ "Record" a test experiment for future

(especially useful in combination with
variables and the -S option)

○ Command-line options are combined with
those implicitly passed by the mode

13

'modes': [
 {
 'name': 'ping_perf',
 'options': [
 '-c tests/ping.py',
 '-S clients=1',
 '-S interval=100',
 '-n ping_test',
 '--exec-order=uid',
 '--performance-report',
 '--exec-policy=serial',
 '--keep-stage-files'
]
 }
]

Example config

reframe --mode=ping_perf -r
reframe --mode=ping_perf -S clients=10 -r
reframe --mode=ping_perf -S foo=bar -r
reframe --mode=ping_perf --exec-policy=async -r

8th EasyBuild User Meeting

Old but gold – Programmable configuration

ReFrame's configuration file is essentially a Python module

● You can dynamically generate system/environment entries
○ Useful in cloud environments where the default hostname-based system entry auto-detection

is not helpful
○ Useful for generating environments specs based on runtime metadata (more from Theo)

● Site-specific fine-tuning
○ Custom parallel launchers (since 4.0)
○ Log record formatting for sending to Elastic (since 4.1)

148th EasyBuild User Meeting

Old but gold – Programmable configuration (cont'd)
from reframe.core.backends import register_launcher
from reframe.core.launchers import JobLaucher

@register_launcher('slrun')
class MySmartLauncher(JobLauncher):
 def command(self, job):
 return ['slrun', '-n', job.num_tasks, ...]

site_configuration = {
 'systems': [
 {
 'name': 'my_system',
 'partitions': [
 {
 'name': 'my_partition',
 'launcher': 'slrun',
 ...
 }
]
 }
]
}

15

def prepend_prefix(record, extras, ignore_keys):
 json_record = {}
 for k, v in record.__dict__.items():
 if not k.startswith('_') and
 k not in ignore_keys:
 json_record[f'my_{k}'] = v

 return json.dumps([json_record])

site_configuration = {
 'logging': [{
 'handlers_perflog': [{
 'type': 'httpjson',
 'url': 'http://elastic_server/',
 'level': 'info',
 'json_formatter': prepend_prefix
 }]
 }]
}

Custom launcher Custom record formatter

8th EasyBuild User Meeting

Old but gold – Dynamic test generation

The make_test() API call allows to create tests programmatically (since 3.10)

16

import reframe.core.builtins as builtins
from reframe.core.meta import make_test

def set_message(obj):
 obj.executable_opts = [obj.message]

def validate(obj):
 return sn.assert_found(obj.message, obj.stdout)

hello_cls = make_test(
 'HelloTest', (rfm.RunOnlyRegressionTest,),
 {
 'valid_systems': ['*'],
 'valid_prog_environs': ['*'],
 'executable': 'echo',
 'message': builtins.variable(str)
 },
 methods=[
 builtins.run_before('run')(set_message),
 builtins.sanity_function(validate)
]
)

class HelloTest(rfm.RunOnlyRegressionTest):
 valid_systems = ['*']
 valid_prog_environs = ['*']
 executable = 'echo'
 message = variable(str)

 @run_before('run')
 def set_message(self):
 self.executable_opts = [self.message]

 @sanity_function
 def validate(self):
 return sn.assert_found(self.message, self.stdout)

hello_cls = HelloTest

This is what the --distribute and --repeat
options leverage internally

Domain-specific test generation using make_test

Example: Generate a series of STREAM benchmark workflows using a
domain-specific spec file

17

stream_workflows:
 - elem_type: 'float'
 array_size: 16777216
 num_iters: 10
 num_cpus_per_task: 4
 - elem_type: 'double'
 array_size: 1048576
 num_iters: 100
 num_cpus_per_task: 1
 - elem_type: 'double'
 array_size: 16777216
 num_iters: 10
 thread_scaling: [1, 2, 4, 8]

- stream_test_2 %num_threads=8 %stream_binaries.elem_type=double
%stream_binaries.array_size=16777216 %stream_binaries.num_iters=10
/7b20a90a
 ^stream_build %elem_type=double %array_size=16777216
%num_iters=10 ~tresa:default+gnu 'stream_binaries /1dd920e5
- stream_test_2 %num_threads=4 %stream_binaries.elem_type=double
%stream_binaries.array_size=16777216 %stream_binaries.num_iters=10
/7cbd26d7
 ^stream_build %elem_type=double %array_size=16777216
%num_iters=10 ~tresa:default+gnu 'stream_binaries /1dd920e5
- stream_test_2 %num_threads=2 %stream_binaries.elem_type=double
%stream_binaries.array_size=16777216 %stream_binaries.num_iters=10
/797fb1ed
 ^stream_build %elem_type=double %array_size=16777216
%num_iters=10 ~tresa:default+gnu 'stream_binaries /1dd920e5
<...>
Found 6 check(s)

Domain spec file Generated tests

Domain-specific test generation using make_test

The idea

● Everything happens in a normal test file
● The spec file is passed in an environment

variable
● The test file reads the spec, generates the

tests using make_test and registers
them with the simple_test decorator.

Full code at
https://github.com/reframe-hpc/reframe/pull/2
866.

18

def load_specs():
 spec_file = os.getenv('STREAM_SPEC_FILE')
 with open(spec_file) as fp:
 return yaml.safe_load(fp)

def generate_tests(specs):
 tests = []
 for i, spec in enumerate(specs['stream_workflows']):
 test_body = {}
 thread_scaling = spec.pop('thread_scaling', None)
 test_body = {
 'stream_binaries': builtins.fixture(
 stream.stream_build, scope='environment', variables=spec)
 }
 methods = []
 if thread_scaling:
 def _set_num_threads(test):
 test.num_cpus_per_task = test.num_threads

 test_body['num_threads'] = builtins.parameter(thread_scaling)
 methods.append(builtins.run_after('init')(_set_num_threads))

 tests.append(make_test(f'stream_test_{i}',
 (stream.stream_test,), test_body, methods))
 return tests

Register the tests with the framework
for t in generate_tests(load_specs()):
 rfm.simple_test(t)

A standard test file

Future outlook

● Improve reporting and post processing of reports
○ Search and compare easily with past reports

● Generalise the system entry auto-detection method, so that it becomes easier
to integrate with cloud environments

● Allow test parameterisation from the command line
○ Re-parameterise a test based on an existing parameterise
○ Parameterise a test based on an existing variable

● Generalise test filtering
○ E.g., based on variable values

We are limited in bandwidth but we are more than happy to accept your
contributions!

198th EasyBuild User Meeting

