
The Challenges of Installing
Software on HPC Systems

Santiago Lacalle Puig

slacalle@imperial.ac.uk
Github: @slacalle EUM23 - 8th EasyBuild User Meeting

• Challenges of installing scientific software.
• Compiling software.
• Other package manager: conda
• System package managers (yum, apt).
• Containers: Singularity.
• Challenges not related to software itself.
• High performance software.
• EasyBuild.

Overview

Challenges of installing scientific software
• Non-standard installations. Very time consuming.
• Support Software that is no longer actively developed.
• Lack of documentation and poor software engineering practices from

software developers. e.g.
• Enhancing code readability
• Keeping code efficient
• Version control
• Being descriptive
• Applying KISS - Keep it Simple, Stupid.

• Dependencies

Dependencies Hell...
Long chains of dependencies
- Conflicting dependencies
- Circular dependencies
- Package manager dependencies
- Diamond dependency

Dependency Hell

Compiling Software

• Environment modules.
• Environment variables: PATH, LDFLAGS, CPATH, CPPFLAGS,

LD_LIBRARY_PATH, RPATH.
• MPI, MKL, BLAS, LAPACK
• Autotools, Make, Cmake

 Example: quantum espresso

$./install/configure –prefix=/apps/espresso/6.3-new BLAS_LIBS=-L/apps/intel/2017.6/compilers_and_libraries_2017.6.256/linux/mkl/lib/intel64/ \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core LAPACK_LIBS=-L/apps/intel/2017.6/compilers_and_libraries_2017.6.256/linux/mkl/lib/intel64/ \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core CPPFLAGS=-I/apps/mpi/intel/2018.1.163/include \
-I/apps/intel/2017.6/compilers_and_libraries_2017.6.256/linux/mkl/include/fftw \
-I/apps/hdf5/1.8.15/parallel/include LDFLAGS=-L/apps/mpi/intel/2018.1.163/lib \
-L/apps/hdf5/1.8.15/parallel/lib -L/apps/intel/2017.6/compilers_and_libraries_2017.6.256/linux/mkl/lib/intel64 \
-L/apps/intel/2017.6/clck/2017.2.019/lib/intel64 --with-hdf5=/apps/hdf5/1.8.15/parallel

Other package managers - Conda

Conda
• Over 7500 packages.
• Aimed at end users/researchers.
• Empower users!
• Reduces support requests.
• Pre-built binaries.
• Relatively quick.
• Plays well with other services (e.g. Jupyter)
• Wide adoption.

Caveats and considerations of using Conda
• Cannot be used for everything. Mainly python and R.
• Environments can become delicate.
• Increased user support requests to fix environments.
• Requires some playing around to learn a number of quirks.
• Installations for non-conda packages can become tedious and more complicated

than using alternatives.
• Doesn’t play nice at times with pip or install.packages()

$ conda create -n test_renv r-base \
r-data.table r-plyr r-ggplot2 r-seurat r-biocmanager \
r-doparallel -c conda-forge -c bioconda

r-base + 6 packages > 247 Packages!

Other Package managers – yum, apt
• Quick solution
• Can cause problems in the future
• Grows the system image
• And most importantly…. Not optimized!

Containers - Singularity
• Containers provide a practical solution for replicating and circulating a pre-existing

software stack.
• Some containers are not as easy to create. They can have have numerous

dependencies.
• Leveraging the os package manager within a container is not enough.

 Generic binaries not tailored to specific architectures. Not optimized!
• Containers may require ongoing support or rebuilding to account for

updates/changes or accommodate multiple architectures.

Challenges not related to software itself:

• Manage incoming requests and deliver in a
timely manner.

• Provide a good level of documentation for service users.
• Efficiently maintain software stacks.
• Ensure organization and standardization

across the stack (directory naming, modules).
• Ensure software is optimized for each architecture.

Are we delivering High Performance Software?
● Are we delivering the most efficient software?

● Who should care for optimized software?

Package managers/sys admins or end users?

● Considerable performance gains in certain cases.

● Running more efficient code can mean:
 Saving users time.
 Reducing compute time.
 Decreasing carbon footprint.
 Money saved.

HPC

EasyBuild
Misconceptions:
• EasyBuild will make it harder to install software.

 Adds another layer of complexity on top of the software.
 Will slow down complex installs.

EasyBuild solves:

 Used to install multiple versions and manage dependencies
 Automatically installs (less pain for package managers)
 Reduces overall install time
 Ensures standardization in naming and organization in modulefiles
 Optimized software for our hardware. PERFORMANCE!

EasyBuild

automatic-build.sh

softwarelist.txt

automatic-build.sh

PBS
Proqsub

GPU
Singularity
Container

Ivy
Singularity
Container

Haswell
Singularity
Container

Rome
Singularity
Container

Future plans:

- Automate user software installation requests to trigger EasyBuild

- Check if software is already
installed if not trigger build.

Provide user with online form that
includes list of software available
on EB.
If software/version not on list, direct
to normal software install form.

SOFTWARE BUILDCreate Ticket in Ticketing System
for user.

Alert Support Team if build fails.

Email user when build passes
without issues and ticket closes.

Optional?
Get software information from
EasyConfig and update list of
installed software. Or create user
facing documentation page.

EasyBuild

Old software stack (manual installs)
Pre 2013

Total modules: 2776

New Software stack (Easybuild)
Since March 2022

1585 modules in development
stack
1152 modules in production
stack
Total modules: 2737

Thank you!

	The Challenges of Installing Software on HPC Systems
	Overview
	Challenges of installing scientific software
	Dependencies Hell...
	Dependency Hell
	Compiling Software
	Other package managers - Conda
	Caveats and considerations of using Conda
	Other Package managers – yum, apt
	Containers - Singularity
	Challenges not related to software itself:
	Slide 12
	EasyBuild
	EasyBuild (2)
	Slide 15
	EasyBuild (3)
	Slide 17

