

JSC site presentation 7th EasyBuild User Meeting

January 28, 2022 | Sebastian Achilles | Jülich Supercomputing Centre

JUWELS Cluster + Booster

JUWELS Cluster

- 2271 standard, 240 large-mem and 56 GPU nodes
- 2× Intel Xeon Platinum 8168, 2× 24 cores, 2.7 GHz
- 96 GB (large mem and GPU 192 GB)
- InfiniBand EDR
- 56 nodes with 4× NVIDIA V100

JUWELS Booster

- 936 nodes
- 2× AMD EPYC Rome 7402, 2× 24 cores, 2.7 GHz
- 512 GB DDR4
- 4× NVIDIA A100
- 4× InfiniBand HDR200

JURECA-DC

JURECA-DC

768 nodes

easyb

- 2× AMD EPYC Rome 7742, 2× 64 cores, 2.25 GHz
- 512 GB DDR4 (large mem 1024 GB)
- 2× InfiniBand HDR200
- 96 large-memory nodes
- 192 GPU nodes with 4× NVIDIA A100

JURECA-Booster

- 1640 nodes
- 1× Intel Xeon Phi 7250-F, 1× 68 cores, 1.4 GHz
- 96 GiB + 16 GiB MCDRAM high-bandwidth memory
- Intel Omni-Path Architecture

JUSUF, HDFML

JUSUF

- 205 nodes
- 2× AMD EPYC Rome 7742, 2× 64 cores, 2.25 GHz
- 256 GB DDR4
- InfiniBand HDR100
- 61 nodes with 1× NVIDIA V100

HDFML

- 16 nodes
- 2× Intel Xeon Gold 6126, 2× 12 cores, 2.60 GHz
- 192 GB DDR4
- 4× NVIDIA V100
- InfiniBand HDR100

DEEP

DEEP-EST prototype

- 50 Cluster nodes: 2 x Intel Xeon Gold 6146, 192 GB
- 75 Extreme Scale Booster nodes: Intel Xeon Silver 4215, 48 GB, 1x NVIDIA V100
- 16 Data Analytics Module nodes: 2x Intel Xeon Platinum 8260M, 384 GB, 1x NVIDIA V100

Other systems

Other Prototypes

- ARM Cluster
- . . .

JSC Clouds

- Jupyter-JSC
- virtual Test cluster(s)

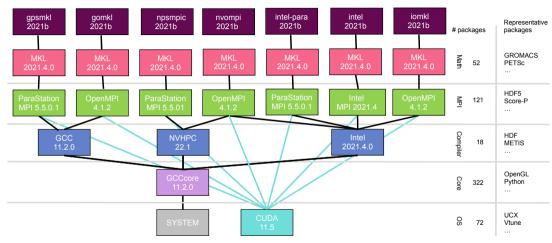
JSC Software Team

- Software Core Team
 - 5 people
 - Responsible for core installation (GCCcore, compiler, MPI, Math)
 - Responsible for reviewing and merging PR into the JSC easybuild repository
- Software Group
 - Group of 36 people
 - Each module has has one responsible person which is applications/packages expert
 - Responsible for installation with EasyBuild (with ACLs), testing and validation as well as user questions

What is new at JSC?

- Beginning with Stages/2022 increase overlap with upstream
- Allow users to install software with EasyBuild on-top of the available modules with

UserInstallations


Stage 2022

- Based on 2021b toolchain family
- Custom toolchains
- Reduced number of custom EasyBlocks (18 compared to 25 in 2021 stage)
- Extended hook

Stages 2022 toolchains

UserInstallations

Install packages in Production stage:

```
ml Stages/2022
ml Developers
eb packages-1.2.3.eb
```

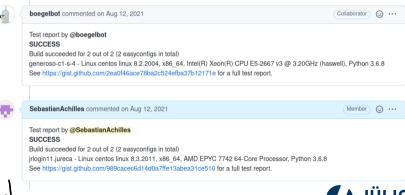
Install packages in User space:

```
ml Stages/2022
ml UserInstallations
eb packages-1.2.3.eb
```

- currently used for testing and development
- Goal: Allow users to install easyconfigs from upstream (--try-*)

Usage of the hook in the JSC repo

- Goal: increase overlap with upstream
- at the same time allow modification in JSC repo as well as allow to use easyconfigs from upstream (e.g. for users)
- Solution:
 - JSC hook can tweak dependencies, e.g. when you want to install an easyconfig from upstream
 - JSC CI is strict and only allows dependencies from JSC repo to maintain readability
- Some dependencies the hook currently tweaks:
 - ucx v1.12.0
 - lacktriangledown Mesa, glu, glew ightarrow OpenGL
 - cuda v11.5
 - Boost v1.78.0

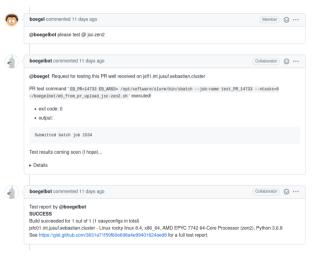

Expanding the EB's shared test infrastructure Virtual Cluster at JSC

Current situation

- One test cluster generoso based on Intel
- Other architectures or OS need to be manually tested by Maintainers



Virtual Cluster with Magic Castle


- Virtual Cluster with Magic Castle: https://github. com/ComputeCanada/magic_ castle
- JUSUF-Cloud: OpenStack, AMD EPYC 7742, NVIDIA V100
- boebelbot listening to submit test-reports

Now boegelbot can also run on AMD zen2

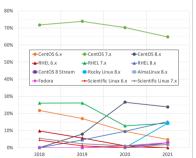
Hardware for tests reports with boegelbot

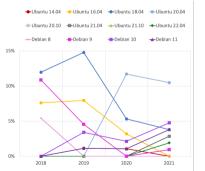
CPU arch	system name	available
Intel Haswell	generoso	✓
AMD Zen2	jsc-zen2	✓

accelerators	system name	available
NVIDIA V100	jsc-zen2	(√)

Hardware for tests reports with boegelbot

CPU arch	system name	available
Intel Haswell	generoso	✓
Intel Skylake		X
AMD Zen2	jsc-zen2	✓
AMD Zen3		X
ARM		X
RISC-V		X


accelerators	system name	available
NVIDIA V100	jsc-zen2	(√)
NVIDIA A100		×
AMD MI100/MI200		X
Intel Arc		X



Testing different operating systems in container?

- Test reports by boegelbot currently done on RockyLinux
- However EasyBuild is used on many operating systems
- ⇒ Let boegelbot test different OS in containers

Thank you!

