
EasyBuild @SURF
Maxim Masterov
HPC advisor
SURF, The Netherlands

SURF
Supercomputing

Clustercomputing

Scientific visualisation

Data services

Research Cloud

Grid/Spider

2

HPML

Digital platforms

Security, trust & identity

Network connectivity

Training, consultancy

…

SURF
Supercomputing

Clustercomputing

Scientific visualisation

Data services

Research Cloud

Grid/Spider

HPCV group

3

HPML

Digital platforms

Security, trust & identity

Network connectivity

Training, consultancy

…

Systems

Cartesius - former national supercomputer
(Broadwell, Haswell, Ivy Bridge, Sandy Bridge,
KNL)

Snellius - new national supercomputer (Ice Lake,
AMD ROME)

Lisa - national cluster (Skylake, Cascade Lake)

ESC - test system (Cascade Lake, AMD ROME)

4

Problems

Large number of modules (we provide software stacks for our users)

Some modules are “unique” for a particular users group or project (software
may not comply with our software policy)

Heterogeneous systems (different architectures, features)

Multiple systems (need to install software on all of them)

5

A bit of history
The old way of installing/maintaining the software

Create new
username for a

specific software
Download

sources/binaries
Write bash script
for the installation

process
Write modulefile

Repeat for every system

6

A bit of history
Huge number of “software users”

Manually written scripts

Manually written modulefiles

No tests or sanity checks

Independent software environments on all systems

Different module environments (Tmod, Lmod)

…

7

Current management
Lmod - module environment

Jenkins - automation

EasyBuild - software installation

ReFrame - software testing

Confluence - docs

Xalt - usage monitoring

8

Problem #1

Large number of modules (we provide software stacks for our users)

Some modules are “unique” for a particular users group or project (software
may not comply with our software policy)

Heterogeneous systems (different architectures, features)

Multiple systems (need to install software on all of them)

9

Module environment
Lmod - same module environment on all systems

Spider cache on (local and global)

LMOD_EXACT_MATCH = yes. Users have to specify full module names.
Simplifies our helpdesk duties

LMOD_EXTENDED_DEFAULT = no. No partial match of a version

LMOD_CASE_INDEPENDENT_SORTING = yes. Simplifies module
search for users

10

Module environment
Global cache is updated at the end of Jenkins pipeline

Local cache (in $HOME) is updated after calling “eblocalinstall”

“eblocalinstall” is a wrapper over the “eb” command. It re-defines
EASYBUILD_INSTALLPATH_XXX envars

11

 $ cat /opt/lmod/lmod/init/lmodrc.lua | tail -n 10
 scDescriptT = {
 {
 dir = “/sw/arch/lmod_cache/cacheDir",
 timestamp = "/sw/arch/lmod_cache/system.txt",
 },
 {
 dir = "~/.lmod.d/.cache",
 timestamp = "~/.lmod.d/users.txt",
 },
 }

 $ cat eblocalinstall | tail -n 8
 # Update the local cache (Lmod only)
 read module_system_version < <(_check_module_system) || exit 1
 if ["$module_system_version" == "Lmod"]
 then
 $LMOD_PKG/libexec/update_lmod_system_cache_files \
 -d ~/.lmod.d/.cache -t ~/.lmod.d/users.txt \
 $EASYBUILD_INSTALLPATH_MODULES
 fi

 exit $exitcode

Software stacks
One software stack release per year

Release in August/September

At most three software stacks on a system:

Production - full support, new software
installation

PreviousProduction - limited support,
patching

Deprecated - no support

We use Xalt to track the software usage

12

$ module av

-------------- /sw/noarch/modulefiles/environment --------------
 2019 2020 2021 slurm-tools

$ module load 2020
$ module av

-------------- /sw/noarch/modulefiles/environment --------------
 2019 2020 (L) 2021 slurm-tools

---- /sw/arch/Debian10/EB_production/2020/modulefiles/phys -----
 Elk/6.3.2-foss-2020a VASP5/5.4.4.pl2-intel-2020a
 Elk/6.3.2-intel-2020a VASP5/5.4.4.pl2-intelcuda-2020a
 UDUNITS/2.2.26-GCCcore-9.3.0 VASP6/6.1.1-intelcuda-2020a

---- /sw/arch/Debian10/EB_production/2020/modulefiles/perf -----
 CubeGUI/4.4.4-GCCcore-9.3.0 OPARI2/2.0.5-GCCcore-9.3.0
 CubeLib/4.4.4-GCCcore-9.3.0 OTF2/2.2-GCCcore-9.3.0
 CubeWriter/4.4.3-GCCcore-9.3.0 PAPI/6.0.0-GCCcore-9.3.0
...

Software stacks
Year/Stack 2019 2020 2021 2022 2023 …

2019a Production Limited
support Deprecated Deleted

2020a Production Limited
support Deprecated Deleted

2021a Production Limited
support Deprecated

2022a Production Limited
support

2023a Production

…

13

Software stacks

Prior to 2021a we installed all software with both “foss” and “intel”
toolchains

Since 2021a we install everything with “foss”. Only a few packages are still
installed with “intel” (e.g. AMS, NWChem, OpenMolcas)

We provide an additional set of compilers and development tools for
experienced users: OneAPI, LLVM, NVHPC, AOCC

We have relatively strict software policy

14

Software policy
Requests for new software:

We do not install software that is older than 2 years unless the software is still maintained and relevant

We don't install more than two different versions of software per toolchain system-wide

We don't install versions older than the one already available system-wide (unless the software has
no backward compatibility). These situations should be assessed on a case-by-case basis

Modules for new versions will replace the existing modules with older versions (unless the software
has no backward compatibility)

The default approach is "users build software themselves in the local prefix". We may assist in
installing software locally, but we avoid doing it ourselves (unless a user has consultancy hours added to
the project)

15

Modules environment

2018 - approx. 700 modules

2019 - approx. 600 modules (introduced software policy)

2020 - approx. 470 modules (introduced Xalt)

2021 - approx. 380 modules (only foss toolchain)

16

Problem #2

Large number of modules (we provide software stacks for our users)

Some modules are “unique” for a particular users group or project (software
installation may not comply with our software policy)

Heterogeneous systems (different architectures, features)

Multiple systems (need to install software on all of them)

17

Sub-stacks

We are involved in multiple projects (Deltares, OSSC, CompBiomed,
ReaxPro, etc.)

Some projects require installation of additional software (e.g. proprietary
software or software that depends on “intel” toolchain)

We do not want to “spoil” our users by sharing additional software with
them :)

We want to avoid duplicates among the installed software

18

Sub-stacks
We introduce sub-stacks

The sub-stack depends on the basic software stack from the same year,
but extends it

Only some users can see/use a sub-stacks (ACLs)

The MODULEPATH is populated in the sub-stack modulefile

19

 $ module av

 --------------------------------- /sw/noarch/environment ---------------------------------
 2020 2021 2021_Delft3D 2021_OSSC

Problem #3

Large number of modules (we provide software stacks for our users)

Some modules are “unique” for a particular users group or project (software
may not comply with our software policy)

Heterogeneous systems (different architectures, features)

Multiple systems (need to install software on all of them)

20

Heterogeneity
The “common” symlinks (Snellius):

AMD nodes:

/sw/arch -> /gpfs/admin/hpc/sw/arch/AMD-ZEN2

Intel nodes:

/sw/arch -> /gpfs/admin/hpc/sw/arch/INTEL-AVX512

All nodes (architecture agnostic modules/software):

/sw/noarch -> /gpfs/admin/hpc/sw/arch/NOARCH

21

/gpfs/admin/hpc/sw
└── arch
│ └── AMD-ZEN2
│ └── INTEL-AVX512
│ └── NOARCH
│ │ └── Centos8.4
│ │ │ └── 2021
│ │ │ │ └── modulefiles
│ │ │ │ │ └── all
│ │ │ │ │ │ └── EasyBuild
│ │ │ │ │ │ └── eb
│ │ │ │ │ └── tools
│ │ │ │ │ │ └── EasyBuild
│ │ │ │ └── software
│ │ │ │ │ └── EasyBuild
│ │ │ │ │ │ └── 4.5.0
│ │ │ │ │ └── eb
│ │ │ │ │ │ └── 4.5.0
│ │ └── environment
└── easybuild
│ └── easyblocks-surfsara
│ └── easyconfigs-surfsara
└── …

Problem #4

Large number of modules (we provide software stacks for our users)

Some modules are “unique” for a particular users group or project (software
may not comply with our software policy)

Heterogeneous systems (different architectures, features)

Multiple systems (need to install software on all of them)

22

Jenkins
Automated software installation (Groovy, Bash + EasyBuild)

Automated regression tests (Groovy, Bash + ReFrame)

Automated documentation generation (Groovy, Bash, Python + REST API)

Ideal workflow: install -> test -> document

Currently, all three are decoupled (WIP)

23

Jenkins

Multiple pipelines

Some are executed
automatically (regression tests)

Some must be started manually
(sw installation)

24

Jenkins
Workflow (software installation):

parse a “buildlist” to check what should be installed

“buildlist” - plain text file with names of easyconfigs +
some options (e.g. --from-pr)

allocate resources on a target machine and architecture

load modules (software stack + EasyBuild)

run installation

update global spider cache

25

 #### Basic Compilers ####
 GCCcore-10.3.0.eb
 intel-compilers-2021.2.0.eb \
 --accept-eula-for=Intel-oneAPI
 #
 #### Basic Components ####
 binutils-2.36.1.eb
 binutils-2.36.1-GCCcore-10.3.0.eb
 pkg-config-0.29.2.eb
 pkg-config-0.29.2-GCCcore-10.3.0.eb
 Autotools-20210128-GCCcore-10.3.0.eb
 ncurses-5.9.eb --from-pr 14144 \
 # we need this specific version for Stata-17
 ncurses-6.2-GCCcore-10.3.0.eb
 git-2.32.0-GCCcore-10.3.0-nodocs.eb
 Mercurial-5.8-GCCcore-10.3.0.eb
 #### MPI Libraries ###
 OpenMPI-4.1.1-GCC-10.3.0.eb \
 --hooks=/sw/eb/easyconfigs-surf/hooks/\
 mpi_hook.py --include-easyblocks=/sw/eb/\
 easyblocks-surf/openmpi.py
 OpenMPI-4.1.1-intel-compilers-2021.2.0.eb \
 --hooks=/sw/eb/easyconfigs-surf/hooks/\
 mpi_hook.py --include-easyblocks=/sw/eb/\
 easyblocks-surf/openmpi.py
 impi-2021.2.0-intel-compilers-2021.2.0.eb \
 --accept-eula-for=Intel-oneAPI \
 --hooks=/sw/\eb/ easyconfigs-surf/hooks/\
 mpi_hook.py
 MPICH-3.4.2-GCC-10.3.0.eb
 #
 …

Jenkins

26

All stages are described in a
groovy script

Jenkins

27

EasyBuild
Old workflow:

download easyconfig from the public repo

modify

test installation locally

push to the local repo

execute a jenkins pipeline

28

EasyBuild
A lot of site-specific easyconfigs and easyblocks in the local repo, almost
no use of hooks

Often only minor differences with the public repo (=> duplicated scripts)

=> easy to lost track of what version to use next time (public or local)

Hardcoded “hot-fixes”

Only local tests on locally available machine(s)

29

EasyBuild
Current workflow:

modify/write easyconfig or easyblock

test locally

create PR to the public repo

wait for acceptance / resolve reviews

use “--from-pr" in the build list

30

EasyBuild
If site-specific modifications needed (e.g. “modextravars”) - write a hook

Feedbacks and checks from the community

Tests on different systems

No duplicated scripts

31

EasyBuild
Users can perform local installation using the wrapper-script (“eblocalinstall”)

$HOME/.local/easybuild/…

Generic installation (i.e. optimised for the least performant architecture)

The wrapper script supports all keys from the “eb” command (--from-pr, --
include-easyblock, etc.)

Users can also use site-specific easyconfigs and easyblocks and some
hooks

32

Docs
A simple Python script (~340 LoC)

Atlassian python API (wrapper over REST API)

The script parses modulefiles by category and
generates/updates the wiki page

Wiki lists description from the modulefile, all
available versions of the software and all
corresponding dependencies

33

Current workflow

34

Workflow we aim for

35

Workflow we aim for

36

Analyse software usage with Xalt

Workflow we aim for

37

Analyse software usage with Xalt
Automate all processes with Jenkins

Workflow we aim for

38

Analyse software usage with Xalt
Automate all processes with Jenkins
Modify/create easyconfigs/easyblocks, PR

Workflow we aim for

39

Analyse software usage with Xalt
Automate all processes with Jenkins
Modify/create easyconfigs/easyblocks, PR
Run regression tests

Workflow we aim for

40

Analyse software usage with Xalt
Automate all processes with Jenkins
Modify/create easyconfigs/easyblocks, PR
Run regression tests
Create documentation

Thank you!

