
1

Todd Gamblin

Advanced Technology Office
Lawrence Livermore National Laboratory

Spack Status and Roadmap
EasyBuild User Meeting
January 25, 2022

2

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

3

The Spack community continues to grow!
Over 6,000 software packages

900+ contributors

5,128 monthly active users on docs
site in October 2022

4

• spack.yaml describes project requirements

• spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

• Can also be used to maintain configuration together with Spack
packages.
– E.g., versioning your own local software stack with consistent

compilers/MPI implementations
– Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

5

Environments have enabled us to add build many features to
support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

6

Major new features:
1. New Concretizer is now default
2. Binary bootstrapping enables us to get up and running fast
3. spack install --reuse aggressively reuses installed packages
4. Improved error messages (for new concretizer)
5. Conditional variants for more expressive packages
6. Git commit versioning
7. Overrides for default config directories
8. Improvements to spack containerize
9. New commands for querying packages and tests by tag

§ 5,969 packages (920 added since 0.16)

§ Full release notes: https://github.com/spack/spack/releases/tag/v0.17.0

Spack v0.17.0 was just released!

https://github.com/spack/spack/releases/tag/v0.17.0

7

Four of the top six most wanted features in Spack
were tied to the new concretizer

• Complexity of packages in Spack is increasing
– many more package solves require backtracking

than a year ago
– Many variants, conditional dependencies, special

compiler requirements

• More aggressive reuse of existing installs
requires better dependency resolution
– Need to be able to analyze how to configure the

build to work with installed packages

• Separate resolution of build dependencies also
requires a more sophisticated solver
– Makes the solve even more combinatorial
– Needed to support mixed compilers, version

conflicts between different package’s build
requirements

Part of milestone STED09-8

8

Four of the top six most wanted features in Spack
were tied to the new concretizer

Part of milestone STED09-8

In review now

Done for 0.17!

9

• Developer features so far have focused on
single packages (spack dev-build, etc.)

• New spack develop feature enables
development environments
– Work on a code
– Develop multiple packages from its

dependencies
– Easily rebuild with changes

• Builds on spack envirnoments
– Required changes to the installation model for

dev packages
– dev packages don’t change paths with

configuration changes
– Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

10

• LLNL Applied ML team needed to deploy
– PyTorch + Kull development environment
– On ppc64le with system MPI

• Before Spack
– Everybody built from scratch
– People wrote scripts and passed them around
– Days were spent trying to debug build differences

• After spack
– Versioned reproducible spack environments in a git repo
– Standard environments in a shared team directory
– Team members can set up a customizable

environment in ~20 minutes.
• Change python version, PyTorch version on the fly
• Leverage binary caches to avoid redundant builds.

c/o Robert Blake

spack:
specs:
- py-horovod
- py-torch
- python
- py-h5py

packages:
all:

providers:
mpi:
- mvapich2@2.3
lapack:
- openblas threads=openmp
blas:
- openblas threads=openmp

buildable: true
variants: [+cuda cuda_arch=37]
compiler: [gcc@7.3.0]

...
python:

version: [3.8.6]
cudnn:

version:
- 8.0.4.30-11.1-linux-x64

py-torch:
buildable: true
variants: +cuda +distributed

mvapich2:
externals:
- spec: mvapich2@2.3.1%gcc@7.3.0

prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0
compilers:

- compiler:
operating_system: rhel7
paths:

cc: /usr/tce/packages/gcc/gcc-7.3.0/bin/gcc
cxx: /usr/tce/packages/gcc/gcc-7.3.0/bin/g++

spack.yaml file

LLNL Applied Machine Learning team has used Spack
environments to accelerate their workflow

We wanted to translate this workflow to larger codes.

11

• Not unlike other LLNL codes, but…

• MARBL is more deeply modular than prior codes
– Designed to support modular physics
– MARBL itself has two hydro options: Miranda & Blast
– Code, build structure both assume that a simulation is

comprised of packages

• Needed a way to simplify modular workflows
– Need to work on several repos at once
– Changes to the code are multiple pull requests

• LLNL doesn’t (likely won’t) use mono-repos
– Managing permissions is hard
– Code timescales vary
– Independence of teams is important

• Wanted replacement for existing makefile-based "MBS"
build system
– Probably the coolest makefile-based build system we've

seen

We have recently introduced some new features to support the
development model of MARBL, an LLNL multi-physics code

Color Key
�First party

�Second party

�Third party

�system_library

marbl

blastmiranda

overlink

irep

leos

selene

quest exoopacity

leilak

rajaumpire

tribol

ransbox physicsutilssamrai

sundials

hdf5

conduit

silo

luajit

sina

blt

boost

tdfrng

axom

el4lupaascentmpi4py openssl readline

mfem

libunwind

camp

hypre lapack

zlib

nuclear

pythonvtkh

vtkm

devil_ray

metis

netcdf

sidre tls

apcomp

caliper

gotcha adiak

12

• First section is familiar
– List of packages with hashes

• spack.yaml ties the modular MARBL
code together:
– hashes
– parts of exo/build directory

• Some differences:
– Packages in Spack are configurable
– Can set per-package options
– Compiler options, flags are configurable

in Spack environments

• If this is too long, some of this can be
moved to external includes

Using git versioning, we've been able to support MARBL's
developer workflow

Current MARBL spack.yaml

MPI

BLAS/LAPACK

build
dependencies

package repos

compiler info

options,
versions/hashes

external
package prefs

13

Spack workflow for developer environment

$ git clone ssh://git@rzgitlab.llnl.gov:7999/mapp/mapp
$ cd mapp
$ spack env activate .
$ spack develop marbl@develop
$ spack develop blast@develop
$ spack develop miranda@develop
$ spack develop exo@develop
$ srun –N 2 –n 16 --exclusive spack install

MAPP

MIRANDABLAST EXOMARBL

. . .

spack.yaml

We can find ways to
shorten this

spack can do multi-node builds

spack.lock

Spack

14

Concretization is at the core of Spack!

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config spack.yamlyaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

cmake

ncurses

openssl

diffutils

libiconv

pkgconf

libffi

zlib

hypre

openmpi

openblashdf5

python

sqlite

gettext

gdbm xz

readline

expat

bzip2perl

sundials

libxml2

tar

hwloc

metis

mfem

petsc

superlu-dist

parmetis

This problem is NP-hard!

15

• Used Clingo, the Potassco grounder/solver package

• ASP program has 2 parts:
1. Large list of facts generated from package recipes & installed

packages
• 15,000 facts is typical – includes dependencies, options, etc.

2. Small logic program (~500 lines of ASP code)

• Algorithm (the part we write) is conceptually simpler:
– Generate facts for all possible dependencies
– Send facts and our logic program to the solver
– Rebuild a DAG from the results

• Binary bootstrapping allows us to get clingo up and running quickly
– First C++ dependency in Spack

In 0.17, the new concretizer is default!

Some facts for HDF5 package

16

Crash course in ASP

• ASP syntax is derived from Prolog

• Basic piece of a program is a term

• Terms can easily represent any data
structure, e.g. this is a graph with:
– 2 nodes, one with a variant value

– 1 dependency edge

• Terms followed by '.' are called facts
– Facts say "this is true!"

enable_some_feature.

node("lammps").

node("cuda").

variant_value("lammps", "cuda", "False").

depends_on("lammps", "cuda", "link").

17

Crash course in ASP

• ASP programs also have rules.
– Rules can derive additional facts.

• :- can be read as "if"
– The head (left side) is true

– If the body (right side) is true

• Comma in the body is like "and"
– Writing same head twice is like "or"

• Capital words are variables
– Rules are instantiated with all possible substitutions

for variables.

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

node("cuda") node("lammps").
depends_on("lammps", "cuda", "link").

18

Crash course in ASP

• Constraints say what cannot happen

• Choice rules give the solver freedom to choose from possible options:

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

:- path(A, B), path(B, A). % this constraint says "no cycles"

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

% if a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

19

ASP searches for stable models of the input program

•Stable models are also called answer sets

•A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
– Similar to fixpoints

– Put more simply: a set of atoms where all your rules are true!

•Unlike Prolog:
– Stable models contain everything that can be derived (vs. just querying values)

– ASP is guaranteed to complete!

20

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressivity in this DSL.

21

• Hash matches are very
sensitive to small changes

• In many cases, a satisfying
cached or already installed
spec can be missed

• Nix, Spack, Guix, Conan, and
others reuse this way

Many packaging systems reuse builds via metadata hashes

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

22

We can be more aggressive about reusing packages.

• First, we need to tell the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

23

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condition.

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

24

With and without reuse optimization

Pure hash-based reuse: all misses With --reuse: 16 packages were actually
acceptable for this build

Note the bifurcated
optimization criteria

25

• Cumulative distribution
of setup and solve times

• Hypothesis: we don’t
see big combinatorial
blow-up b/c we're strict
about dependency
hashes

• Next: try mixed ABI, but
prefer "pure" source-
built dependencies

So far, it looks like we can handle very large problem sizes
with the reusing solver

Most of the time is spent in setup
(reading data in Python – can be sped up w/caching)

Even with 63k packages in a repo,
nearly all package solves take < 10 sec

26

Future CI directions focus on scalability and testing

• Scaling tests up to handle every PR has been very difficult
– Driven by GitLab
– Using Kubernetes builders
– Using a cluster at U. Oregon

• Concretization of large environments was slowing turnaround
– 55 min to concretize E4S environment (each spec separately)
– Brought this down to 2.5 min with parallelization and caching

• Amazon and E4S/UO team helping to pinpoint errors
• We are now doing about 100,000 builds/month

• Once we have a stable, rolling release of spack develop branch,
we’ll make the build cache public
– Rolling binaries for develop
– Long-lived snapshots for each release http://stats.e4s.io

27

Spack v0.18 roadmap:
Separate concretization of build dependencies
• We want to:

– Build build dependencies with the "easy" compilers
– Build rest of DAG (the link/run dependencies) with the

fancy compiler

• 2 approaches to modify concretization:
1. Separate solves

• Solve run and link dependencies first
• Solve for build dependencies separately
• May restrict possible solutions (build ßà run env

constraints)
2. Separate models

• Allow a bigger space of packages in the solve
• Solve all runtime environments together
• May explode (even more) combinatorially

1

2 5

3 4

B

B

76

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

Easy compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

8

R

BL

L
B

R

28

• We need deeper modeling of compilers to handle
compiler interoperability
– libstdc++, libc++ compatibility
– Compilers that depend on compilers
– Linking executables with multiple compilers

• First prototype is complete!
– We’ve done successful builds of some packages using

compilers as dependencies
– We need the new concretizer to move forward!

• Packages that depend on languages
– Depend on cxx@2011, cxx@2017, fortran@1995, etc
– Depend on openmp@4.5, other compiler features
– Model languages, openmp, cuda, etc. as virtuals

Spack 0.18 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Compiler-imposed dependency

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

29

Spack v0.18 roadmap: provide a public binary build cache

spack ci

Spack Contributions
on GitHub

spack.yaml
configuration

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch
• Different compilers (Intel soon!)

• Our security model supports untrusted contributions from forks
– Sandboxed build caches for PR builds
– Authoritative builds on develop only after approved merge

x86_64 and aarch64
pipelines in AWS

Many pipelines at
U. Oregon

Pipelines at LLNL
(Cray PE coming soon)

30

We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

Traditional
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Skylake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source

31

Easyconfigs vs. Spack Packages

• Tradeoff is testing: Easyconfigs are "one" thing per config, Spack package.py's are many things.
– Build farm is our solution for this: ensure there are stable binary releases

Builtin spack packages

Easyconfigs (not including Easyblocks)

162k lines of Python~6,000 packages

449k lines of Python~2,500 packages

32

Under the BUILD project, we are looking at building models for
build reliability

• Basic premise: humans can’t generate all the
compatibility constraints
– Version ranges, conflicts, in Spack packages not precise
– We rely on maintainers to get these right
– How much of this burden can we automate?

• Plot shows experiments with ADIOS – we've built a model for build success
– Aim is to include this type of data in the solver to improve source builds.

33

Approved for public release

