Spack Status and Roadmap

EasyBuild User Meeting
January 25, 2022

Todd Gamblin

Advanced Technology Office
Lawrence Livermore National Laboratory

TR U.S. DEPARTMENT OF Office of

g. @) EN ERGY Science

Spack enables Software distribution for HPC

« Spack automates the build and installation of scientific software

« Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

$ spack install hdf5@1.10.5 $ spack install hdf5@1.10.5 cppflags="-03 —g3"

$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell

$ spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2 .
github.com/spack/spack

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
« Generates (but does not require) modules
« Allows conda/virtualenv-like environments
« Provides many devops features (Cl, container generation, more)

—
\\ EXASCALE
COMPUTING
\ PROJECT

The Spack community continues to grow!

Over 6,000 software packages
900+ contributors

Contributions (lines of code) over time in packages, by organization

160000 1 LLNL . RIT B RIKEN
ANL/UIUC EEE unknown B 3vGeomatics
By 140000 A lowa ANL N FAU
\, lowa State CERN m CSsCs
P 120000 1 g Hisilicon Hamburg EEE CEA
J x ;;« o 100000 - Il EPFL AMD Fujitsu
_ 2 I LANL I ORNL I Other
<5 & 80000 -
2 60000
k" 40000 A
20000 A
Al Users Jan 18,2020 - Jan 24, 2022 0-— -
100.00% Users +Add Segment '19'\?) r&,\,b(’1«6\(? q,d\'b '19'\:\ ’19'\3) ,19'\9 ,19’19 '19’1:\’

Active Users

v/ 1 Day Active Users v/ 7 Day Active Users v/ 14 Day Active Users ' 28 Day Active Users

5,000

9,128 monthly active users on docs
site in October 2022

4,000

Spack environments enable users to build customized stacks

from an abstract description

L Dependency

L i packages
[install } build
insta project

spack.yaml file with . Lockfile describes
names of required i exact versions installed

dependencies

v

» spack.yaml describes project requirements

» spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

» Can also be used to maintain configuration together with Spack
packages.

- E.g., versioning your own local software stack with consistent
compilers/MPI implementations

— Allows developers and site support engineers to easily version
Spack configurations in a repository

P \
EC)P e

Simple spack.yaml file

spack:
include external configuration
include:
- ../special-config—-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf

— openmpi

Concrete spack.lock file (generated)

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy61l3nul": {
"hdf5": {
“version": "1.10.5"Y,
Yarch®: 4
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"
h
"compiler": {
"name": "clang",
"version": "10.0.0-apple"
h
"namespace": "builtin",
"parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"hil*: Talse,
"mpi": true,

Environments have enabled us to add build many features to
support developer workflows

class Cmake(Package):
executables = ['cmake']

F 1
- spack external find
def determine_spec_details(cls, prefix, exes_in_prefix):

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
exe_to_path = dict(

. . GNU libsigsegv is a library for handling page faults in user mode
(05-path.basenane(p), p) for p in exes_in_pretix Automatically find and configure external packages on the system

... spack package contents ...
if 'cmake' not in exe_to_path:

extra_install_tests = ‘tests/.libs’
return None def test(self):
data_dir = self.test_suite.current_test_data_dir
cmake = spack.util.executable.Executable(exe_to_path['cmake']) packages: smoke_test_c = data_dir.joinC‘smoke_test.c’)
output = cmake('--version', output=str) :
if output: cmake: self;rug_t%st(
match = re.search(r'cmake.xversion\s+(\S+)', output) externals: CC P T%s' % self.prefix.include,
if match: - spec: cmake@3.15.1 "-L%s' % self.prefix.lib, '-lsigsegv’,
version_str = match.group(1) T
return Spec('cmake@{@}'.format(version_str)) prefix: /usr/local

smoke_test_c,

spack test , T

purpose="check linking’)

package.py spack.yaml configuration Packages know how to run their own test suites S

“smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run’built smoke test’)

self.run_test('sigsegvl': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

package.py

Pipeline Jobs 123 .
Stage-0 Stage-1 Stage-2 i S p a C C l
)s) g o P,
- Iscompilers) 2 Ourzrasee. (O spack:
- [Soses] = (——— specs: # Build stage
e Automatically generate parallel build pipelines Som
(more on this later AT () Q1 0 (0 RO o T
untu1s. o4 ° ©Omairatges. © @resdine 70 ge.. O @saite 32605.. O # singularity or anything else that is currently sy,
tributes: format: docker
* “« g “ echo " install_tree: /opt/software"
spack-k8s # Select from a valid list of images echo " view: /opt/view") > /opt/spack-environment/spack.yam
ud-centos: e " # Install the software, remove unecessary deps
) o image: “centos:7’ RUN cd /opt/spack-environment & spack install & spack gc -y
) spack: develop
5 # Whether or not to strip binaries N
spack-k8s strip: true 1 nary' | \
image: spack/spack_builder_centos_7 'Y 'Y sz «m::hé;;EATLEEZQE“’J;"T:M’t 1
cdash: 5 1 a - C '|_ . m # Additional system packages that are needed at rum
url: https://cdash.spack.io P gl RUN cd /opt/spack-enviror
project: Spack - libgomp

spack env activate —sh —d . >» /etc/profile.d/z10_spack_environment.sh

Extra instructions

Turn environments into container build recipes
spack.yaml

final: |
——from-buslder /opt/spack-environsent /opt/spack-environnen
RUN echo 'export PS1="\[$(tput bold)\]\[$(tput setaf 1) e *
COPY from-builder /opt/view /opt/view
2 (B (0 i S COPY —from-builder /etc/profile.d/216.spack environment.sh /etc/profile.d/z10_spack eN

labels: RUN yun update -y 65 yun install -y epel-release & yun update -y
app: "gromacs" & yum install -y Uibgonp \

mpi: “"mpich" 8 -rf /var/cache/yun 66 yum clean all

RUN echo “export PSI="\[5(tput bold\I\[$(tput setaf 1\]lgromacs]\[s(tput setaf 2)\I\uA[S(tpu

T \
\ EXASCALE
E (}I: COMPUTING
\ PROJECT
\E;

Spack v0.17.0 was just released!

Major new features:
1. New Concretizer is now default
Binary bootstrapping enables us to get up and running fast
spack install --reuse aggressively reuses installed packages
Improved error messages (for new concretizer)
Conditional variants for more expressive packages
Git commit versioning
Overrides for default config directories
Improvements to spack containerize
New commands for querying packages and tests by tag

© 0N U A WN

= 5,969 packages (920 added since 0.16)

= Full release notes: https://github.com/spack/spack/releases/tag/v0.17.0

https://github.com/spack/spack/releases/tag/v0.17.0

Four of the top six most wanted features in Spack

were tied to the new concretizer

Average feature importance by workplace

Reuse existing installs JZARwA 5 2.6 24 2.7
2.4 2.3 25 21 2.2 2.2
Better flag handling —[Z2ERwS 4 22 22 21
Better dev support giZa . 2 2.3 21 2.2

Separate build-deps —Z4RS ZERPAVE S ECE Y.

Language virtuals -[Z4R8 4 1 22 1.7 2.0
Pkg maintainer notif, gz 2 9 21 16 21

Build testing (ClI) g7 2= .0 21 1.7 2.0

Optimized binaries —f1E a8 18l mEEE I EEE 1T)

Package testing 40.9 0.9 0.7 1.0 0.9 1.0 1.0

Cloud integration -0.8 0.6 0.5 0.8 "= 0.8 0.6

Windows support - 0.5 0.6 0.7 0.5 0.7 0.4 0.4

—
\\ EXASCARLE
) COMPUTING
\ PROJECT
Seart

4 -

Critical

- Very

Important

- Somewhat

important

- Slightly

Important

- Not

Important

« Complexity of packages in Spack is increasing
— many more package solves require backtracking

than a year ago

- Many variants, conditional dependencies, special
compiler requirements

» More aggressive reuse of existing installs
requires better dependency resolution

— Need to be able to analyze how to configure the
build to work with installed packages

» Separate resolution of build dependencies also
requires a more sophisticated solver

— Makes the solve even more combinatorial

— Needed to support mixed compilers, version
conflicts between different package’s build

requirements

Part of milestone STED(09-8

Four of the top six most wanted features in Spack
were tied to the new concretizer

Average feature importance by workplace

Reuse existing installs j#eds]
New concretizer JN&L

Better flag handling

Better dev support e

Separate build-deps

4 - Critical

3 - Very
Important

Language virtuals - Somewhat

important

Done for 0.17!

.....

- Slightly

09~ 05 0.7 1.0 0.9 1.0 1. Important
Cloud integration - 0.8 0.6 0.5 0.8 ' 0.8 0.6 —In review now
i o o 0.7 0. .7 0.4 0.4
Windows support v 0.5 0.7 04 O 0 Not
' ' ' ' ' ' ' Important
P EFE S S S
> v 060 \AQ} ‘6\\0

pX
EWCP e Part of milestone STED09-8

spack develop lets developers work on many packages at once

« Developer features so far have focused on e A e LI a3
ingle packages (spack dev-build, etc.) spack add myapplication
singi€ p g p ’ . spack develop axom@0.4.0

spack develop mfem@4.2.0
 New spack develop feature enables

development environments
— Work on a code $ 1s

— Develop multiple packages from its spack.yaml axom/ mfem/
dependencies

— Easily rebuild with changes

$ cat spack.yaml

« Builds on spack envirnoments spack:
: : : specs:
— Required changes to the installation model for — myapplication # depends on axom, mfem

dev packages

develop:
— axom @0.4.0
— mfem @develop

— dev packages don’t change paths with
configuration changes

— Allows devs to iterate on builds quickly

c/o Robert Blake

LLNL Applied Machine Learning team has used Spack
environments to accelerate their workflow

spack:
specs:
oo
 LLNL Applied ML team needed to deploy v
— PyTorch + Kull development environment L
pr‘OV'!. ers:
— On ppc64le with system MPI " nvapichez. 3
lapack:
- openblas threads=openmp
* Before Spack
— Everybody built from scratch Compiler: Coccer.s o
— People wrote scripts and passed them around ython:
— Days were spent trying to debug build differences st
py-torch: - rve
[J After SpaCk mvggﬁgg?l?.iuda +distributed
— Versioned reproducible spack environments in a git repo S epecs mvapich2e2.3. gccer.3.0 |
. . . |_9r'eﬁ>.(: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0
— Standard environments in a shared team directory emier
. operating_system: rhe
- Team members can Set u a CUStomlzabIe pai??:/usr/tce/packages/gcc/gcc—7.3.®/bin/gcc
environment in ~20 minu es- cxx: /usr/tce/packages/gcc/gcc-7.3.0/bin/g++
» Change python version, PyTorch version on the fly spack.yaml file

» Leverage binary caches to avoid redundant builds.

We wanted to translate this workflow to larger codes.

We have recently introduced some new features to support the
development model of MARBL, an LLNL multi-physics code

Not unlike other LLNL codes, but...

MARBL is more deeply modular than prior codes
— Designed to support modular physics
— MARBL itself has two hydro options: Miranda & Blast

— Code, build structure both assume that a simulation is
comprised of packages

Needed a way to simplify modular workflows
— Need to work on several repos at once
— Changes to the code are multiple pull requests

LLNL doesn’t (likely won’t) use mono-repos
— Managing permissions is hard
— Code timescales vary
— Independence of teams is important

Wanted replacement for existing makefile-based "MBS"
build system

— Probably the coolest makefile-based build system we've
seen

Using git versioning, we've been able to support MARBL's
developer workflow = —

providers:
mpi: [mvapich2] k
blas: [netlib-lapack] pac age p
lapack: [netlib-lapack]

hypre:
variants: +shared

@develop build_type=Release
@develop

» First section is familiar , et

@950e3bfb91519ecb7b7ee7fa3063bfab23c@e2c9

mpi:
buildable: fal
externals:
- spec: mvapich2@2.3%intel@18.0.2 process_managers=slurm arch=linux-rhel7-ivybridge
prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-intel-18.0.2
blas:
buildable: L
lapack:

buildable: 1
nectib-lapack; BLAS/LAPACK
buildable: 1
externals:
- spec: netlib-lapack@3.6.1+shared
prefix: /usr
cuda:
buildable: L
externals:
- spec: cuda@10.2
prefix: /opt/cudatoolkit/10.2
Basic build deps

. . ascent ~fortran~openmp @587f6cf9503ef6176e59a04616331baed5e36ce6
— L I St Of p a C ka g e S W I th h a S h e S axom ~Lua~openmp @587f6cf9503ef6176e59a046f6331baedSe36ce6
blt @43022da4dfed5a50a02fbd@355defdd3f12157cd
caliper~libdw @85601f48e7883fb87dec85e92c849eec2bb61f7
camp @85601f48e7883fb87dec85e92c849eec2bb61f7
care @7f43ed9ed840016173b8434b6471142a8 fd4882

.
° S p a C k ya m .I_ tl e S th e m Od u I a r M A R B L chai @d3282bc95¢533efb90ec0ad6085e455daad7df6b
hd conduit @f54f834eb8aaff4fc97613e@4cfdb360997867be
. dray ~test~utils~openmp @c@bee76f2dce29139bde1084bf@85d7d1c1b@1bs
CO d e tO g eth e r . @aded49098871d0al1ff749be7135d95¢25e90ca
i @20aeb2c@3ce70f445232dba74179e03c94dedc2c
@e0455990e57e5b74e16343816cd@d2d4f38d65de

_ h a S h e S i @5d4d2893b25c4dfe4add5dd6d8110179980c2a6b autoconf:
i @1886056c398a06919bf8cce4216732fc1d8643954 buildable: fal
mfem +shared @9d8043b9e78dcdcd86639bbb28d3bd7b514fb5e2 fX::Z:?lz;tnconf@z @
H H raja ~openmp @cbh6370bb2868e35ebbaz23cdce927f5f7f9da530 Srefixsl/usr ’
— pa rtS Of eXO/ bu | Id d | rectory ransbox @edf072bfa7b3f6eaf dGeblo6abbe65ae5f677abe autonake:
samrai @39017121bda44f ff713fe3b@1cb1e063bed3023b buildable: fal
selene @6f9b15713c738d70b125bc08aef72925d961a02e fx‘;e;:"ﬂ;tomnke@l B
spheral @8cC54824¢2937405203¢3803ab44960 26d506d s
. - tribol @9185d317bf14d87462ca345086931580c591eb4 bzip2:
L S O m e d Iffe re n CeS umpire ~openmp @5201a47a35e3844160dcbecd?916f8c96aa7ddo7 buildable: fal
" vtkh @cd6004c94b083b@96f da5994b491b8229dacd79 fxzsg’c“ﬂ;;ipz@l G
. . hdf5 @:1.8 +cxx+fortran~mpi prefix: Juse
netcdf-c ~mpi H cmake:
— Packages in Spack are configurable options, build
boost 01.76 buildable: fal ul

externals:

- : cmake®3.14.5 H
;t:;ixfm;u:r‘/tce/packages/cmake/cmake—3.14.5 e enden(“es

gettext:
buildable: L
externals:
- spec: gettext@.19.8.1
prefix: /usr
libtool:
buildable: L
externals:
- spec: libtool@2.4.2
prefix: /usr
m4:
buildable: 1
externals:
- spec: m4@1.4.16
prefix: /usr
perl:
buildable: fal
externals:
- spec: perl@5.16.3
prefix: /usr
pkg-config:
buildable: L
externals:
- spec: pkg-confige.27.1
prefix: /usr
tar:
buildable: L

Current MARBL spack.yaml e v 26

prefix: /usr

: e = Mersions/hashes
— Can set per-package options view: ¢

concretization: together

— Compiler options, flags are configurable i oo e
in Spack environments e PACESISTER

compilers:
- compiler:

« If this is too long, some of this can be

. cc: /usr/tce/bin/icc-18.0.2
cxx: /usr/tce/bin/icpc-18.0.2 H :
moved to external includes o ey, compiler info

fc: /usr/tce/bin/ifort-18.0.2

flags: {3

operating_system: rhel?

target: x86_64

modules: [gcc/4.9.3, intel/18.0.2]

Spack workflow for developer environment
Spack

git clone ssh://git@rzgitlab.11lnl.gov:7999/mapp/mapp
cd mapp

spack env activate .

spack develop marbl@develop .

spack develop blast@develop We can find ways to
spack develop miranda@develop shorten this

spack develop exo@develop

srun 7N 2 -n 1q --exclusive spack install

A A A AA AAA

spack can do multi-node builds

) L

spack.yaml spack.lock

MIRANDA Exo

—
ECP ===

Concretization is at the core of Spack!

Contributors

a @ ~* new versions
* new dependencies
* new constraints

N
spack default config
developers packages.yaml
_ N\
admins, local preferences config
users packages.yaml
users environment config spack.yaml
Concrete spec is
fully constrained
Command line constraints and can be built.

ppppppp

spack install hdf5@1.12.0 +debug

This problem is NP-hard!

In 0.17, the new concretizer is default!

» Used Clingo, the Potassco grounder/solver package

* ASP program has 2 parts:

1. Large list of facts generated from package recipes & installed
packages

« 15,000 facts is typical — includes dependencies, options, etc.
2. Small logic program (~500 lines of ASP code)

» Algorithm (the part we write) is conceptually simpler:
— Generate facts for all possible dependencies
— Send facts and our logic program to the solver
— Rebuild a DAG from the results

» Binary bootstrapping allows us to get clingo up and running quickly
— First C++ dependency in Spack

Some facts for HDF5 package

Crash course in ASP

« ASP syntax is derived from Prolog
» Basic piece of a program is a term

e Terms can easily represent any data
structure, e.g. this is a graph with:

— 2 nodes, one with a variant value

— 1 dependency edge

» Terms followed by "." are called facts

— Facts say "this is true!"

enable_some_feature.

node("lammps™).

node("cuda").

variant_value("lammps"”, "cuda", "False").

depends_on("lammps", "cuda", "link").

Crash course in ASP

* ASP programs also have rules. « Comma in the body is like "and"
— Rules can derive additional facts. — Writing same head twice is like "or"
e :-can be read as "if" e Capital words are variables
— The head (left side) is true — Rules are instantiated with all possible substitutions

_ , _ for variables.
— If the body (right side) is true

node(Dependency) :- node(Package), depends_on(Package, Dependency, Type).

= = node("lammps™).
SRl G <: | depends_on("lammps", "cuda", "link").

Crash course in ASP

» Constraints say what cannot happen

path(A, B) :- depends_on(A, B).

:- path(A, B), path(B, A).

path(A, C) :- path(A, B), depends_on(B, O).

% this constraint says "no cycles”

* Choice rules give the solver freedom to choose from possible options:

% 1f a package is in the graph, solver must choose exactly one version
% out of that package's possible versions
1 { version(V) : possible_version(Package, V) } 1 :- node(Package).

ASP searches for stable models of the input program

e Stable models are also called answer sets

» A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.

— Similar to fixpoints
— Put more simply: a set of atoms where all your rules are true!
 Unlike Prolog:

— Stable models contain everything that can be derived (vs. just querying values)

— ASP is guaranteed to complete!

Spack DSL allows declarative specification of complex constraints

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):
variant('cuda', default= .
description="Build with CUDA"')

cuda is a variant (build option)

variant('cuda_arch', cuda_arch is only present
description="CUDA architecture’', if cuda is enabled

values=any_combination_of(cuda_arch_values),
when="+cuda"')
dependency on cuda, but only

depends_on('cuda', when="+cuda"') if cuda is enabled

depends_on('cuda@9.0:", when="cuda_arch=70") _ :
depends_on('cuda@9.0: "', when="'cuda_arch=72") constraints on cuda version

depends_on('cuda@10.0: ", when="cuda_arch=75")

conflicts('%gcc@9:', when="+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppc64le:') QElsloNs]olasZANC

There is a lot of expressivity in this DSL.

Many packaging systems reuse builds via metadata hashes

/ . mpi

mpileaks / | Libdwarf e H h
) 1bdwar m h r V
™ cartparr o dninst [T 1. Resolve metadata asnh | atches are very
: ! dyninst !] Libelf sensitive to small changes
: ! ! : ! | 2. Create per-node hashes o
| | - | ! « In many cases, a satisfying
: : : : l cwx4qwk4bkamf4gjrglmxfudbhasyt74 cached or already installed
: : : : qo2af23rZnpatxdtna3fmwkeennywixp SpeC can be missed
I I o
| | | KayumgunaGijubivfpbjprrbzygeoot _—————_ = Nix, Spack, Guix, Conan, and
I I I .
! - v _ ~ others reuse this way
: : 4xxvh51dm7gm32ngtixcm2odaer3cvvb
: v
I
I

74mwnxgn6nujehpyyalhwizwojwn5zga PaCKage
55 »~ cache
y — w

6zvh4ueembfSyrcfugh67k2hrtxbgbcs
yret J 3. Query for exact hash match

—
ECP &=

We can be more aggressive about reusing packages.

« First, we need to tell the solver about all the installed packages!
« Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","lwatuuysmwkhuahrncywvn77icdhsémn”

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node" , "openssl"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" ,"version","openssl","1.1.1g"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_platform_set","openssl","darwin"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsemn” , "node_os_set","openssl”,"catalina"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_target_set","openssl","x86_64"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” ,"variant_set","openssl”,"systemcerts","True").
","openssl","apple-clang"

" "openssl","apple-clang","12.0.0").

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node_compiler_set
imposed_constraint("1lwatuuysmwkhuahrncywvn77icdhsémn” , "node_compiler_version_set

imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , " concrete
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "depends_on", "openssl"”,"zlib","build"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "depends_on","openssl"”,"zlib","1link"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "hash" ,"z1ib", "x2anksgssxsxa7pcnhzg5k3dhgacglze").

openssl”

Telling the solver to minimize builds is surprisingly simple:
it's just the impose half of a generalized condition.

1. Allow the solver to choose a hash for any package:

hash(Package, Hash installed_hash(Package, Hash 1 node(Package

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

3. Define a build as something without a hash:

build(Package hash(Package, _), node(Package

4. Minimize builds!

1@100,Package : build(Package

ECP ===

With and without reuse optimization

spackle):solver

solve -I1 hdf5

Note the bifurcated

optimization criteria

==> Best of 9 considered solutions.
==> Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (nhon-roots)
preferred providers (non-roots)
compiler mismatches

Installed ToBuild
20

spackle):spack solve --reuse -I1 hdf5

==> Best of 1@ considered solutions.

==> Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)

Installed ToBuild

0S mismatches

non-preferred 0S's

version badness

default values of variants not being u
non-preferred compilers

target mismatches

non-preferred targets

hdf5@1.10.7
Acmake@3.21.4
Ancurses@6.2
Apkgconf@1.8.0
Aopenssl@1.1.11
Aperl@5.34.0
Aberkeley-db@18.1.40
Abzip2@1.0.8
Adiffutils@3.8
Alibiconv@l.
Agdbm@1 . 19
Areadline@8. 1!
Az1ib@1.2.11!
Aopenmpi@4.1.1
Ahwloc@2.6.0
Alibxml2@2.9.12
Axz@5.2.5
Alibevent@2.1.12
Aopenssh@g. 7p1!
Alibedit@3.1-20210216

sed (non-roots)

(]
(]
(]
(]
(]
(]
(]
(]
(]
(]
(]
(/]
(]
0
0

OOOONOOOSOOOe

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default H

~doc+ncurses+openssl+ownlibs~qt build_type=Release
~symlinks+termlib abi=none

~docs certs=system
+cpanm+shared+threads
+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a481
~debug~pic+shared

16 libs=shared,static

+optimize+pic+shared
~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac
~cairo~cuda~gl~libudev+1libxml2~netloc~nvml~opencl~pci~rocm+sh
~python
~pic libs=shared,static

+openssl

Pure hash-based reuse: all misses

compiler mismatches
0S mismatches
non-preferred 0S's
version badness

default values of variants not being used (non-roots)

non-preferred compilers
target mismatches
non-preferred targets

hdf5@1.10.7
Acmake@3 .21 .1
Ancurses@6. 2
Aopenssl@1.1.11
Az1lib@1.2.11
Aopenmpi@4.1.1
Ahwloc@2.6.0
Alibxml2@2.9.12

Axz@5.2.5
Apkgconf@1.8.0
Alibevent@2.1.12
Aopenssh@g . 6pl!

Aperl@5.34.0

Abzip2€1.0.8
Agdbm@1.. 19

Alibiconv@l.16

Alibedit@3.1-202

Aberkeley-db@18.1

Areadline@s8. 1

=
OO UIRPOOOOSOOONOOOS® |
(SRS SIS BSOS IS RS IS TS IS IS IS TS BGS S

~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
~doc+ncurses+openssl+ownlibs~qt build_type=Release
~symlinks+termlib abi=none
~docs+systemcerts
+optimize+pic+shared
~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+
~python
libs=shared,static
~pic libs=shared,static

+openssl
+cpanm+shared+threads

+cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814f
~debug~pic+shared

With --reuse: 16 packages were actually
acceptable for this build

So far, it looks like we can handle very large problem sizes
with the reusing solver

setup solve
e Cumulative distribution - W - i
of setup and solve times 5
* Hypothesis: we don't |
. . . 3000 - 3000 - !
see big combinatorial . . |
blow-up b/c we're strict : |
about dependency £ 2000 2 2000 |
hashes ;
e Next: try mixed ABI, but 1000 - 1000 - i
prefer "pure" source- |
built dependencies —gmens || T
—— 27160 cached pks ol ™ 27160 cached pks
01 —— 63099 cached pks — 63099 cached pks
0 20 40 60 80 100 120 0 5 10 15 ; 20 25 30 35
Sec ec
Most of the time is spent in setup Even with 63k packages in a repo,
(reading data in Python — can be sped up wicaching) nearly all package solves take <10 sec

—
ECP &=

Future CI directions focus on scalability and testing

Scaling tests up to handle every PR has been very difficult
— Driven by GitLab
— Using Kubernetes builders
— Using a cluster at U. Oregon

Concretization of large environments was slowing turnaround
-~ 55 min to concretize E4S environment (each spec separately)
— Brought this down to 2.5 min with parallelization and caching

Amazon and E4S/UO team helping to pinpoint errors
We are now doing about 100,000 builds/month

Once we have a stable, rolling release of spack develop branch,
we’ll make the build Cache pu lic B e R LA L

— Rolling binaries for develop

~ Long-lived snapshots for each release hitp://stats.eds.io

= (C\\F’

Spack v0.18 roadmap:
Separate concretization of build dependencies

 We want to:

spack install pkgl %intel

— Build build dependencies with the "easy" compilers
— Build rest of DAG (the link/run dependencies) with the
fancy compiler
» 2 approaches to modify concretization:
1. Separate solves
« Solve run and link dependencies first
 Solve for build dependencies separately

« May restrict possible solutions (build <> run env
constraints)

2. Separate models

» Allow a bigger space of packages in the solve
« Solve all runtime environments together

O Easy compiler

« May explode (even more) combinatorially Fancy compiler

- B: build L:link R:run

Spack 0.18 Roadmap: compilers as dependencies

« We need deeper modeling of compilers to handle
compiler interoperability

— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

* First prototype is complete!

— We've done successful builds of some packages using
compilers as dependencies

— We need the new concretizer to move forward!

 Packages that depend on languages
— Depend on exx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

P \
EC)P e

7’
a 7 Compiler-imposed dependency
_ 1
L

Compilers and runtime libs fully modeled
as dependencies

Spack v0.18 roadmap: provide a public binary build cache

Spack Contributions V gitlab.spack.io v g
O on GitHub > |

¢

spack. yaml GitLab CI builds (changed) packages

N @ ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab configuration o On every pU” request
* On every release branch

SpaCk C-i' w (Cray PE coming soon)

x86_64 and aarch64
pipelines in AWS

Many pipelines at
U. Oregon

Pipelines at LLNL

soon!)

Q « Different compilers (Intel

4

o Our security model supports untrusted contributions from forks
— Sandboxed build caches for PR builds
— Authoritative builds on develop only after approved merge

We aim to lower the burden of maintaining a binary distribution
and make it easy to mix source builds with binaries.

N -
NS > —
Traditional]
package manager Portabl timized One software stack
Recipe per Build farm ortable (Unc_’p imize) uparaded over time
package configuration x86_64 binaries Pg
(need rewrites for new systems)
|:Il> Optimized |:> z||:| z||:| zl|:| Many
[Q a trln, Graviton2 binaries O3 M3 YO goftware stacks
@ a :I> Skcl)plfimti'zed' |:> ZIE ?E zlg Built for specific:
Spack Pparameterized recipe N T == te CSySte_InS
per package Build farm / CI - ompriers
Same recipe evolves for all targets optimizad |:> = zl:l Zln v
(pe evolv gets) Ty GPU binaries ZIE E E MPIs

etc.

Q Users/developers can also build directly from source ? F

Easyconfigs vs. Spack Packages

Builtin spack packages

~6,000 packages 162k lines of Python

161824
57965

Easyconfigs (not including Easyblocks)
~2,500 packages 449k lines of Python

119997 449023
12961 104540

» Tradeoff is testing: Easyconfigs are "one" thing per config, Spack package.py's are many things.
— Build farm is our solution for this: ensure there are stable binary releases

,:;\ \ EXASCALE
EC)P e

Under the BUILD project, we are looking at building models for
build reliability

autoconf automake c-blosc libtool mpich SZ zfp
1.10.0 -
1.11.0 -
L1111 -
g 1.12.0- 1 B]
2 1.13.0- [| i [
1.13.1 - B
1.9.0 -
develop - i i
p lllllﬁ |||‘gl] LI |) (e o o | o | I N R S i R R B R G e i R 0§ AT =d | I N R B |
AR Ao R R R Ko “omaec N o it e iy R e A o B i e o - Qe MmMA MW
e e e — o T S OO N S b= < = 9 e e b ks B R o Koo e) S ANN 1910 10 1910
NN ® e e e R m Bmme o MM e Y ey coococo
— - e k= T B e R 6 E A
< < — == -

Figure 8: Heatmap of Adios and its dependencies with scores indicating which version pairs are highly likely to build.

» Basic premise: humans can’t generate all the
compatibility constraints

— Version ranges, conflicts, in Spack packages not precise
— We rely on maintainers to get these right
— How much of this burden can we automate?

» Plot shows experiments with ADIOS — we've built a model for build success
— Aim is to include this type of data in the solver to improve source builds.

—
E(CP 225

Approved for public release

=R U.S. DEPARTMENT OF Office of

—— s 5 2
ECP & I VA3 (U/ENERGY | science

